- -

Development and Characterization of Sustainable Composites from Bacterial Polyester Poly(3-Hydroxybutyrate-co-3-hydroxyhexanoate) and Almond Shell Flour by Reactive Extrusion with Oligomers of Lactic Acid

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Development and Characterization of Sustainable Composites from Bacterial Polyester Poly(3-Hydroxybutyrate-co-3-hydroxyhexanoate) and Almond Shell Flour by Reactive Extrusion with Oligomers of Lactic Acid

Mostrar el registro completo del ítem

Ivorra-Martínez, J.; Manuel-Mañogil, J.; Boronat, T.; Sanchez-Nacher, L.; Balart, R.; Quiles-Carrillo, L. (2020). Development and Characterization of Sustainable Composites from Bacterial Polyester Poly(3-Hydroxybutyrate-co-3-hydroxyhexanoate) and Almond Shell Flour by Reactive Extrusion with Oligomers of Lactic Acid. Polymers. 12(5):1-23. https://doi.org/10.3390/polym12051097

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/162581

Ficheros en el ítem

Metadatos del ítem

Título: Development and Characterization of Sustainable Composites from Bacterial Polyester Poly(3-Hydroxybutyrate-co-3-hydroxyhexanoate) and Almond Shell Flour by Reactive Extrusion with Oligomers of Lactic Acid
Autor: Ivorra-Martínez, Juan Manuel-Mañogil, Jose Boronat, Teodomiro Sanchez-Nacher, Lourdes Balart, Rafael Quiles-Carrillo, Luis
Entidad UPV: Universitat Politècnica de València. Instituto de Tecnología de Materiales - Institut de Tecnologia de Materials
Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials
Fecha difusión:
Resumen:
[EN] Eco-effcient Wood Plastic Composites (WPCs) have been obtained using poly(hydroxybutyrate-co-hexanoate) (PHBH) as the polymer matrix, and almond shell flour (ASF), a by-product from the agro-food industry, as ...[+]
Palabras clave: PHBH , Almond shell flour , Mechanical properties , Thermal characterization , WPCs
Derechos de uso: Reconocimiento (by)
Fuente:
Polymers. (eissn: 2073-4360 )
DOI: 10.3390/polym12051097
Editorial:
MDPI AG
Versión del editor: https://doi.org/10.3390/polym12051097
Código del Proyecto:
info:eu-repo/grantAgreement/GVA//ACIF%2F2016%2F182/
info:eu-repo/grantAgreement/UPV//PAID-01-19-04/ES/Procesado y optimización de materiales avanzados derivados de estructuras proteicas y componentes lignocelulósicos/
info:eu-repo/grantAgreement/MECD//FPU15%2F03812/ES/FPU15%2F03812/
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/MAT2017-84909-C2-2-R/ES/PROCESADO Y OPTIMIZACION DE MATERIALES AVANZADOS DERIVADOS DE ESTRUCTURAS PROTEICAS Y COMPONENTES LIGNOCELULOSICOS/
info:eu-repo/grantAgreement/UPV//UPV-FISABIO-2019-A02/
Agradecimientos:
This research work was funded by the Spanish Ministry of Science, Innovation, and Universities (MICIU) project number MAT2017-84909-C2-2-R. This work was supported by the POLISABIO program grant number (2019-A02). J. ...[+]
Tipo: Artículo

References

Carbonell-Verdu, A., Bernardi, L., Garcia-Garcia, D., Sanchez-Nacher, L., & Balart, R. (2015). Development of environmentally friendly composite matrices from epoxidized cottonseed oil. European Polymer Journal, 63, 1-10. doi:10.1016/j.eurpolymj.2014.11.043

España, J. M., Samper, M. D., Fages, E., Sánchez-Nácher, L., & Balart, R. (2013). Investigation of the effect of different silane coupling agents on mechanical performance of basalt fiber composite laminates with biobased epoxy matrices. Polymer Composites, 34(3), 376-381. doi:10.1002/pc.22421

Basalp, D., Tihminlioglu, F., Sofuoglu, S. C., Inal, F., & Sofuoglu, A. (2020). Utilization of Municipal Plastic and Wood Waste in Industrial Manufacturing of Wood Plastic Composites. Waste and Biomass Valorization, 11(10), 5419-5430. doi:10.1007/s12649-020-00986-7 [+]
Carbonell-Verdu, A., Bernardi, L., Garcia-Garcia, D., Sanchez-Nacher, L., & Balart, R. (2015). Development of environmentally friendly composite matrices from epoxidized cottonseed oil. European Polymer Journal, 63, 1-10. doi:10.1016/j.eurpolymj.2014.11.043

España, J. M., Samper, M. D., Fages, E., Sánchez-Nácher, L., & Balart, R. (2013). Investigation of the effect of different silane coupling agents on mechanical performance of basalt fiber composite laminates with biobased epoxy matrices. Polymer Composites, 34(3), 376-381. doi:10.1002/pc.22421

Basalp, D., Tihminlioglu, F., Sofuoglu, S. C., Inal, F., & Sofuoglu, A. (2020). Utilization of Municipal Plastic and Wood Waste in Industrial Manufacturing of Wood Plastic Composites. Waste and Biomass Valorization, 11(10), 5419-5430. doi:10.1007/s12649-020-00986-7

SINGH, S., & MOHANTY, A. (2007). Wood fiber reinforced bacterial bioplastic composites: Fabrication and performance evaluation. Composites Science and Technology, 67(9), 1753-1763. doi:10.1016/j.compscitech.2006.11.009

Mukheem, A., Hossain, M. M., Shahabuddin, S., Muthoosamy, K., Manickam, S., Sudesh, K., … Sridewi, N. (2018). Bioplastic Polyhydroxyalkanoate (PHA): Recent Advances in Modification and Medical Applications. doi:10.20944/preprints201808.0271.v1

Petchwattana, N., & Covavisaruch, S. (2014). Mechanical and Morphological Properties of Wood Plastic Biocomposites Prepared from Toughened Poly(lactic acid) and Rubber Wood Sawdust (Hevea brasiliensis). Journal of Bionic Engineering, 11(4), 630-637. doi:10.1016/s1672-6529(14)60074-3

Summerscales, J., Dissanayake, N., Virk, A., & Hall, W. (2010). A review of bast fibres and their composites. Part 2 – Composites. Composites Part A: Applied Science and Manufacturing, 41(10), 1336-1344. doi:10.1016/j.compositesa.2010.05.020

Avérous, L. (2004). Biodegradable Multiphase Systems Based on Plasticized Starch: A Review. Journal of Macromolecular Science, Part C: Polymer Reviews, 44(3), 231-274. doi:10.1081/mc-200029326

Yang, Y., Ke, S., Ren, L., Wang, Y., Li, Y., & Huang, H. (2012). Dielectric spectroscopy of biodegradable poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) films. European Polymer Journal, 48(1), 79-85. doi:10.1016/j.eurpolymj.2011.10.002

Liao, Q., Noda, I., & Frank, C. W. (2009). Melt viscoelasticity of biodegradable poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) copolymers. Polymer, 50(25), 6139-6148. doi:10.1016/j.polymer.2009.10.049

Alata, H., Aoyama, T., & Inoue, Y. (2007). Effect of Aging on the Mechanical Properties of Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate). Macromolecules, 40(13), 4546-4551. doi:10.1021/ma070418i

Misra, S. K., Valappil, S. P., Roy, I., & Boccaccini, A. R. (2006). Polyhydroxyalkanoate (PHA)/Inorganic Phase Composites for Tissue Engineering Applications. Biomacromolecules, 7(8), 2249-2258. doi:10.1021/bm060317c

Mahmood, H., Pegoretti, A., Brusa, R. S., Ceccato, R., Penasa, L., Tarter, S., & Checchetto, R. (2020). Molecular transport through 3-hydroxybutyrate co-3-hydroxyhexanoate biopolymer films with dispersed graphene oxide nanoparticles: Gas barrier, structural and mechanical properties. Polymer Testing, 81, 106181. doi:10.1016/j.polymertesting.2019.106181

Corre, Y.-M., Bruzaud, S., Audic, J.-L., & Grohens, Y. (2012). Morphology and functional properties of commercial polyhydroxyalkanoates: A comprehensive and comparative study. Polymer Testing, 31(2), 226-235. doi:10.1016/j.polymertesting.2011.11.002

Watanabe, T., He, Y., Fukuchi, T., & Inoue, Y. (2001). Comonomer Compositional Distribution and Thermal Characteristics of Bacterially Synthesized Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate)s. Macromolecular Bioscience, 1(2), 75-83. doi:10.1002/1616-5195(20010301)1:2<75::aid-mabi75>3.0.co;2-q

Oyama, T., Kobayashi, S., Okura, T., Sato, S., Tajima, K., Isono, T., & Satoh, T. (2019). Biodegradable Compatibilizers for Poly(hydroxyalkanoate)/Poly(ε-caprolactone) Blends through Click Reactions with End-Functionalized Microbial Poly(hydroxyalkanoate)s. ACS Sustainable Chemistry & Engineering, 7(8), 7969-7978. doi:10.1021/acssuschemeng.9b00897

Sato, H., Nakamura, M., Padermshoke, A., Yamaguchi, H., Terauchi, H., Ekgasit, S., … Ozaki, Y. (2004). Thermal Behavior and Molecular Interaction of Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) Studied by Wide-Angle X-ray Diffraction. Macromolecules, 37(10), 3763-3769. doi:10.1021/ma049863t

Hu, Y., Zhang, J., Sato, H., Noda, I., & Ozaki, Y. (2007). Multiple melting behavior of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) investigated by differential scanning calorimetry and infrared spectroscopy. Polymer, 48(16), 4777-4785. doi:10.1016/j.polymer.2007.06.016

Xu, P., Cao, Y., Lv, P., Ma, P., Dong, W., Bai, H., … Chen, M. (2018). Enhanced crystallization kinetics of bacterially synthesized poly(3-hydroxybutyrate-co-3-hydroxyhexanate) with structural optimization of oxalamide compounds as nucleators. Polymer Degradation and Stability, 154, 170-176. doi:10.1016/j.polymdegradstab.2018.06.001

Tham, W. L., Ishak, Z. A. M., & Chow, W. S. (2014). Water Absorption and Hygrothermal Aging Behaviors of SEBS-g-MAH Toughened Poly(lactic acid)/Halloysite Nanocomposites. Polymer-Plastics Technology and Engineering, 53(5), 472-480. doi:10.1080/03602559.2013.845208

Tham, W. L., Poh, B. T., Mohd Ishak, Z. A., & Chow, W. S. (2014). Water Absorption Kinetics and Hygrothermal Aging of Poly(lactic acid) Containing Halloysite Nanoclay and Maleated Rubber. Journal of Polymers and the Environment, 23(2), 242-250. doi:10.1007/s10924-014-0699-y

Arbelaiz, A., Fernández, B., Ramos, J. A., Retegi, A., Llano-Ponte, R., & Mondragon, I. (2005). Mechanical properties of short flax fibre bundle/polypropylene composites: Influence of matrix/fibre modification, fibre content, water uptake and recycling. Composites Science and Technology, 65(10), 1582-1592. doi:10.1016/j.compscitech.2005.01.008

Deroiné, M., Le Duigou, A., Corre, Y.-M., Le Gac, P.-Y., Davies, P., César, G., & Bruzaud, S. (2014). Accelerated ageing of polylactide in aqueous environments: Comparative study between distilled water and seawater. Polymer Degradation and Stability, 108, 319-329. doi:10.1016/j.polymdegradstab.2014.01.020

Gil-Castell, O., Badia, J. D., Kittikorn, T., Strömberg, E., Martínez-Felipe, A., Ek, M., … Ribes-Greus, A. (2014). Hydrothermal ageing of polylactide/sisal biocomposites. Studies of water absorption behaviour and Physico-Chemical performance. Polymer Degradation and Stability, 108, 212-222. doi:10.1016/j.polymdegradstab.2014.06.010

Petinakis, E., Yu, L., Edward, G., Dean, K., Liu, H., & Scully, A. D. (2009). Effect of Matrix–Particle Interfacial Adhesion on the Mechanical Properties of Poly(lactic acid)/Wood-Flour Micro-Composites. Journal of Polymers and the Environment, 17(2), 83-94. doi:10.1007/s10924-009-0124-0

Pilla, S., Gong, S., O’Neill, E., Rowell, R. M., & Krzysik, A. M. (2008). Polylactide-pine wood flour composites. Polymer Engineering & Science, 48(3), 578-587. doi:10.1002/pen.20971

Shah, B. L., Selke, S. E., Walters, M. B., & Heiden, P. A. (2008). Effects of wood flour and chitosan on mechanical, chemical, and thermal properties of polylactide. Polymer Composites, 29(6), 655-663. doi:10.1002/pc.20415

Balart, J. F., García-Sanoguera, D., Balart, R., Boronat, T., & Sánchez-Nacher, L. (2016). Manufacturing and properties of biobased thermoplastic composites from poly(lactid acid) and hazelnut shell wastes. Polymer Composites, 39(3), 848-857. doi:10.1002/pc.24007

Ling, S. L., Koay, S. C., Chan, M. Y., Tshai, K. Y., Chantara, T. R., & Pang, M. M. (2019). Wood Plastic Composites Produced from Postconsumer Recycled Polystyrene and Coconut Shell: Effect of Coupling Agent and Processing Aid on Tensile, Thermal, and Morphological Properties. Polymer Engineering & Science, 60(1), 202-210. doi:10.1002/pen.25273

Quitadamo, A., Massardier, V., & Valente, M. (2019). Eco-Friendly Approach and Potential Biodegradable Polymer Matrix for WPC Composite Materials in Outdoor Application. International Journal of Polymer Science, 2019, 1-9. doi:10.1155/2019/3894370

Salasinska, K., Polka, M., Gloc, M., & Ryszkowska, J. (2016). Natural fiber composites: the effect of the kind and content of filler on the dimensional and fire stability of polyolefin-based composites. Polimery, 61(04), 255-265. doi:10.14314/polimery.2016.255

Wang, X., Yu, Z., & McDonald, A. G. (2019). Effect of Different Reinforcing Fillers on Properties, Interfacial Compatibility and Weatherability of Wood-plastic Composites. Journal of Bionic Engineering, 16(2), 337-353. doi:10.1007/s42235-019-0029-0

Yussuf, A. A., Massoumi, I., & Hassan, A. (2010). Comparison of Polylactic Acid/Kenaf and Polylactic Acid/Rise Husk Composites: The Influence of the Natural Fibers on the Mechanical, Thermal and Biodegradability Properties. Journal of Polymers and the Environment, 18(3), 422-429. doi:10.1007/s10924-010-0185-0

Kuciel, S., Jakubowska, P., & Kuźniar, P. (2014). A study on the mechanical properties and the influence of water uptake and temperature on biocomposites based on polyethylene from renewable sources. Composites Part B: Engineering, 64, 72-77. doi:10.1016/j.compositesb.2014.03.026

Liminana, P., Quiles-Carrillo, L., Boronat, T., Balart, R., & Montanes, N. (2018). The Effect of Varying Almond Shell Flour (ASF) Loading in Composites with Poly(Butylene Succinate (PBS) Matrix Compatibilized with Maleinized Linseed Oil (MLO). Materials, 11(11), 2179. doi:10.3390/ma11112179

Quiles-Carrillo, L., Montanes, N., Garcia-Garcia, D., Carbonell-Verdu, A., Balart, R., & Torres-Giner, S. (2018). Effect of different compatibilizers on injection-molded green composite pieces based on polylactide filled with almond shell flour. Composites Part B: Engineering, 147, 76-85. doi:10.1016/j.compositesb.2018.04.017

Mathew, A. P., Oksman, K., & Sain, M. (2005). Mechanical properties of biodegradable composites from poly lactic acid (PLA) and microcrystalline cellulose (MCC). Journal of Applied Polymer Science, 97(5), 2014-2025. doi:10.1002/app.21779

Ghaffar, S. H., Madyan, O. A., Fan, M., & Corker, J. (2018). The Influence of Additives on the Interfacial Bonding Mechanisms Between Natural Fibre and Biopolymer Composites. Macromolecular Research, 26(10), 851-863. doi:10.1007/s13233-018-6119-8

Tserki, V., Matzinos, P., Kokkou, S., & Panayiotou, C. (2005). Novel biodegradable composites based on treated lignocellulosic waste flour as filler. Part I. Surface chemical modification and characterization of waste flour. Composites Part A: Applied Science and Manufacturing, 36(7), 965-974. doi:10.1016/j.compositesa.2004.11.010

Rezaee Niaraki, P., & Krause, A. (2019). Correlation between physical bonding and mechanical properties of wood plastic composites: Part 1: interaction of chemical and mechanical treatments on physical properties. Journal of Adhesion Science and Technology, 34(7), 744-755. doi:10.1080/01694243.2019.1683325

Åkesson, D., Fazelinejad, S., Skrifvars, V.-V., & Skrifvars, M. (2016). Mechanical recycling of polylactic acid composites reinforced with wood fibres by multiple extrusion and hydrothermal ageing. Journal of Reinforced Plastics and Composites, 35(16), 1248-1259. doi:10.1177/0731684416647507

Torres-Giner, S., Montanes, N., Fenollar, O., García-Sanoguera, D., & Balart, R. (2016). Development and optimization of renewable vinyl plastisol/wood flour composites exposed to ultraviolet radiation. Materials & Design, 108, 648-658. doi:10.1016/j.matdes.2016.07.037

Juárez, D., Ferrand, S., Fenollar, O., Fombuena, V., & Balart, R. (2011). Improvement of thermal inertia of styrene–ethylene/butylene–styrene (SEBS) polymers by addition of microencapsulated phase change materials (PCMs). European Polymer Journal, 47(2), 153-161. doi:10.1016/j.eurpolymj.2010.11.004

Pracella, M., Haque, M. M.-U., & Alvarez, V. (2010). Functionalization, Compatibilization and Properties of Polyolefin Composites with Natural Fibers. Polymers, 2(4), 554-574. doi:10.3390/polym2040554

Chabros, A., Gawdzik, B., Podkościelna, B., Goliszek, M., & Pączkowski, P. (2019). Composites of Unsaturated Polyester Resins with Microcrystalline Cellulose and Its Derivatives. Materials, 13(1), 62. doi:10.3390/ma13010062

Mokhena, T., Sefadi, J., Sadiku, E., John, M., Mochane, M., & Mtibe, A. (2018). Thermoplastic Processing of PLA/Cellulose Nanomaterials Composites. Polymers, 10(12), 1363. doi:10.3390/polym10121363

Patwa, R., Saha, N., Sáha, P., & Katiyar, V. (2019). Biocomposites of poly(lactic acid) and lactic acid oligomer‐grafted bacterial cellulose: It’s preparation and characterization. Journal of Applied Polymer Science, 136(35), 47903. doi:10.1002/app.47903

Tripathi, N., & Katiyar, V. (2018). Lactic acid oligomer (OLLA) grafted gum arabic based green adhesive for structural applications. International Journal of Biological Macromolecules, 120, 711-720. doi:10.1016/j.ijbiomac.2018.07.199

Lascano, D., Moraga, G., Ivorra-Martinez, J., Rojas-Lema, S., Torres-Giner, S., Balart, R., … Quiles-Carrillo, L. (2019). Development of Injection-Molded Polylactide Pieces with High Toughness by the Addition of Lactic Acid Oligomer and Characterization of Their Shape Memory Behavior. Polymers, 11(12), 2099. doi:10.3390/polym11122099

Zhou, Y., Huang, Z., Diao, X., Weng, Y., & Wang, Y.-Z. (2015). Characterization of the effect of REC on the compatibility of PHBH and PLA. Polymer Testing, 42, 17-25. doi:10.1016/j.polymertesting.2014.12.014

Asrar, J., Valentin, H. E., Berger, P. A., Tran, M., Padgette, S. R., & Garbow, J. R. (2002). Biosynthesis and Properties of Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) Polymers. Biomacromolecules, 3(5), 1006-1012. doi:10.1021/bm025543a

Ding, C., Cheng, B., & Wu, Q. (2010). DSC analysis of isothermally melt-crystallized bacterial poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) films. Journal of Thermal Analysis and Calorimetry, 103(3), 1001-1006. doi:10.1007/s10973-010-1135-8

Jacquel, N., Tajima, K., Nakamura, N., Miyagawa, T., Pan, P., & Inoue, Y. (2009). Effect of orotic acid as a nucleating agent on the crystallization of bacterial poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) copolymers. Journal of Applied Polymer Science, 114(2), 1287-1294. doi:10.1002/app.30587

Quiles-Carrillo, L., Duart, S., Montanes, N., Torres-Giner, S., & Balart, R. (2018). Enhancement of the mechanical and thermal properties of injection-molded polylactide parts by the addition of acrylated epoxidized soybean oil. Materials & Design, 140, 54-63. doi:10.1016/j.matdes.2017.11.031

Burgos, N., Martino, V. P., & Jiménez, A. (2013). Characterization and ageing study of poly(lactic acid) films plasticized with oligomeric lactic acid. Polymer Degradation and Stability, 98(2), 651-658. doi:10.1016/j.polymdegradstab.2012.11.009

Armentano, I., Fortunati, E., Burgos, N., Dominici, F., Luzi, F., Fiori, S., … Kenny, J. M. (2015). Processing and characterization of plasticized PLA/PHB blends for biodegradable multiphase systems. Express Polymer Letters, 9(7), 583-596. doi:10.3144/expresspolymlett.2015.55

Amor, A., Okhay, N., Guinault, A., Miquelard-Garnier, G., Sollogoub, C., & Gervais, M. (2018). Combined compatibilization and plasticization effect of low molecular weight poly(lactic acid) in poly(lactic acid)/poly(3-hydroxybutyrate-co-3-hydroxyvalerate) blends. Express Polymer Letters, 12(2), 114-125. doi:10.3144/expresspolymlett.2018.10

Ferri, J. M., Garcia-Garcia, D., Montanes, N., Fenollar, O., & Balart, R. (2017). The effect of maleinized linseed oil as biobased plasticizer in poly(lactic acid)-based formulations. Polymer International, 66(6), 882-891. doi:10.1002/pi.5329

Garcia-Campo, M., Quiles-Carrillo, L., Masia, J., Reig-Pérez, M., Montanes, N., & Balart, R. (2017). Environmentally Friendly Compatibilizers from Soybean Oil for Ternary Blends of Poly(lactic acid)-PLA, Poly(ε-caprolactone)-PCL and Poly(3-hydroxybutyrate)-PHB. Materials, 10(11), 1339. doi:10.3390/ma10111339

Thomas, S., Shumilova, A. A., Kiselev, E. G., Baranovsky, S. V., Vasiliev, A. D., Nemtsev, I. V., … Volova, T. G. (2020). Thermal, mechanical and biodegradation studies of biofiller based poly-3-hydroxybutyrate biocomposites. International Journal of Biological Macromolecules, 155, 1373-1384. doi:10.1016/j.ijbiomac.2019.11.112

Gong, X., Gao, X., Tang, C. Y., Law, W.-C., Chen, L., Hu, T., … Rao, N. (2017). Compatibilization of poly(lactic acid)/high impact polystyrene interface using copolymer poly(stylene-ran-methyl acrylate). Journal of Applied Polymer Science, 135(6), 45799. doi:10.1002/app.45799

Hosoda, N., Tsujimoto, T., & Uyama, H. (2013). Green Composite of Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) Reinforced with Porous Cellulose. ACS Sustainable Chemistry & Engineering, 2(2), 248-253. doi:10.1021/sc400290y

Perinović, S., Andričić, B., & Erceg, M. (2010). Thermal properties of poly(l-lactide)/olive stone flour composites. Thermochimica Acta, 510(1-2), 97-102. doi:10.1016/j.tca.2010.07.002

Liminana, P., Garcia-Sanoguera, D., Quiles-Carrillo, L., Balart, R., & Montanes, N. (2019). Optimization of Maleinized Linseed Oil Loading as a Biobased Compatibilizer in Poly(Butylene Succinate) Composites with Almond Shell Flour. Materials, 12(5), 685. doi:10.3390/ma12050685

Yin, C., Wang, Z., Luo, Y., Li, J., Zhou, Y., Zhang, X., … He, C. (2018). Thermal annealing on free volumes, crystallinity and proton conductivity of Nafion membranes. Journal of Physics and Chemistry of Solids, 120, 71-78. doi:10.1016/j.jpcs.2018.04.028

Oliver-Ortega, H., Méndez, J., Espinach, F., Tarrés, Q., Ardanuy, M., & Mutjé, P. (2018). Impact Strength and Water Uptake Behaviors of Fully Bio-Based PA11-SGW Composites. Polymers, 10(7), 717. doi:10.3390/polym10070717

Pfister, D. P., & Larock, R. C. (2010). Thermophysical properties of conjugated soybean oil/corn stover biocomposites. Bioresource Technology, 101(15), 6200-6206. doi:10.1016/j.biortech.2010.02.070

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem