Mostrar el registro sencillo del ítem
dc.contributor.author | Ivorra-Martínez, Juan | es_ES |
dc.contributor.author | Manuel-Mañogil, Jose | es_ES |
dc.contributor.author | Boronat, Teodomiro | es_ES |
dc.contributor.author | Sanchez-Nacher, Lourdes | es_ES |
dc.contributor.author | Balart, Rafael | es_ES |
dc.contributor.author | Quiles-Carrillo, Luis | es_ES |
dc.date.accessioned | 2021-03-01T08:09:08Z | |
dc.date.available | 2021-03-01T08:09:08Z | |
dc.date.issued | 2020-05 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/162581 | |
dc.description.abstract | [EN] Eco-effcient Wood Plastic Composites (WPCs) have been obtained using poly(hydroxybutyrate-co-hexanoate) (PHBH) as the polymer matrix, and almond shell flour (ASF), a by-product from the agro-food industry, as filler/reinforcement. These WPCs were prepared with different amounts of lignocellulosic fillers (wt %), namely 10, 20 and 30. The mechanical characterization of these WPCs showed an important increase in their stiffness with increasing the wt % ASF content. In addition, lower tensile strength and impact strength were obtained. The field emission scanning electron microscopy (FESEM) study revealed the lack of continuity and poor adhesion among the PHBH-ASF interface. Even with the only addition of 10 wt % ASF, these green composites become highly brittle. Nevertheless, for real applications, the WPC with 30 wt % ASF is the most attracting material since it contributes to lowering the overall cost of the WPC and can be manufactured by injection moulding, but its properties are really compromised due to the lack of compatibility between the hydrophobic PHBH matrix and the hydrophilic lignocellulosic filler. To minimize this phenomenon, 10 and 20 phr (weight parts of OLA-Oligomeric Lactic Acid per one hundred weight parts of PHBH) were added to PHBH/ASF (30 wt % ASF) composites. Differential scanning calorimetry (DSC) suggested poor plasticization effect of OLA on PHBH-ASF composites. Nevertheless, the most important property OLA can provide to PHBH/ASF composites is somewhat compatibilization since some mechanical ductile properties are improved with OLA addition. The study by thermomechanical analysis (TMA), confirmed the increase of the coeffcient of linear thermal expansion (CLTE) with increasing OLA content. The dynamic mechanical characterization (DTMA), revealed higher storage modulus, E¿, with increasing ASF. Moreover, DTMA results confirmed poor plasticization of OLA on PHBH-ASF (30 wt % ASF) composites, but interesting compatibilization effects. | es_ES |
dc.description.sponsorship | This research work was funded by the Spanish Ministry of Science, Innovation, and Universities (MICIU) project number MAT2017-84909-C2-2-R. This work was supported by the POLISABIO program grant number (2019-A02). J. Ivorra-Martinez is the recipient of an FPI grant from Universitat Politècnica de València (PAID-2019). L. Quiles-Carrillo wants to thank GV for his FPI grant (ACIF/2016/182) and MECD for his FPU grant (FPU15/03812). Microscopy services at UPV are acknowledged for their help in collecting and analyzing FESEM images. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | MDPI AG | es_ES |
dc.relation.ispartof | Polymers | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | PHBH | es_ES |
dc.subject | Almond shell flour | es_ES |
dc.subject | Mechanical properties | es_ES |
dc.subject | Thermal characterization | es_ES |
dc.subject | WPCs | es_ES |
dc.subject.classification | CIENCIA DE LOS MATERIALES E INGENIERIA METALURGICA | es_ES |
dc.subject.classification | INGENIERIA DE LOS PROCESOS DE FABRICACION | es_ES |
dc.title | Development and Characterization of Sustainable Composites from Bacterial Polyester Poly(3-Hydroxybutyrate-co-3-hydroxyhexanoate) and Almond Shell Flour by Reactive Extrusion with Oligomers of Lactic Acid | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3390/polym12051097 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//ACIF%2F2016%2F182/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/UPV//PAID-01-19-04/ES/Procesado y optimización de materiales avanzados derivados de estructuras proteicas y componentes lignocelulósicos/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MECD//FPU15%2F03812/ES/FPU15%2F03812/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/MAT2017-84909-C2-2-R/ES/PROCESADO Y OPTIMIZACION DE MATERIALES AVANZADOS DERIVADOS DE ESTRUCTURAS PROTEICAS Y COMPONENTES LIGNOCELULOSICOS/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/UPV//UPV-FISABIO-2019-A02/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto de Tecnología de Materiales - Institut de Tecnologia de Materials | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials | es_ES |
dc.description.bibliographicCitation | Ivorra-Martínez, J.; Manuel-Mañogil, J.; Boronat, T.; Sanchez-Nacher, L.; Balart, R.; Quiles-Carrillo, L. (2020). Development and Characterization of Sustainable Composites from Bacterial Polyester Poly(3-Hydroxybutyrate-co-3-hydroxyhexanoate) and Almond Shell Flour by Reactive Extrusion with Oligomers of Lactic Acid. Polymers. 12(5):1-23. https://doi.org/10.3390/polym12051097 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.3390/polym12051097 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 23 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 12 | es_ES |
dc.description.issue | 5 | es_ES |
dc.identifier.eissn | 2073-4360 | es_ES |
dc.identifier.pmid | 32403400 | es_ES |
dc.identifier.pmcid | PMC7285348 | es_ES |
dc.relation.pasarela | S\413130 | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.contributor.funder | Universitat Politècnica de València | es_ES |
dc.contributor.funder | Ministerio de Educación, Cultura y Deporte | es_ES |
dc.contributor.funder | Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunitat Valenciana | es_ES |
dc.description.references | Carbonell-Verdu, A., Bernardi, L., Garcia-Garcia, D., Sanchez-Nacher, L., & Balart, R. (2015). Development of environmentally friendly composite matrices from epoxidized cottonseed oil. European Polymer Journal, 63, 1-10. doi:10.1016/j.eurpolymj.2014.11.043 | es_ES |
dc.description.references | España, J. M., Samper, M. D., Fages, E., Sánchez-Nácher, L., & Balart, R. (2013). Investigation of the effect of different silane coupling agents on mechanical performance of basalt fiber composite laminates with biobased epoxy matrices. Polymer Composites, 34(3), 376-381. doi:10.1002/pc.22421 | es_ES |
dc.description.references | Basalp, D., Tihminlioglu, F., Sofuoglu, S. C., Inal, F., & Sofuoglu, A. (2020). Utilization of Municipal Plastic and Wood Waste in Industrial Manufacturing of Wood Plastic Composites. Waste and Biomass Valorization, 11(10), 5419-5430. doi:10.1007/s12649-020-00986-7 | es_ES |
dc.description.references | SINGH, S., & MOHANTY, A. (2007). Wood fiber reinforced bacterial bioplastic composites: Fabrication and performance evaluation. Composites Science and Technology, 67(9), 1753-1763. doi:10.1016/j.compscitech.2006.11.009 | es_ES |
dc.description.references | Mukheem, A., Hossain, M. M., Shahabuddin, S., Muthoosamy, K., Manickam, S., Sudesh, K., … Sridewi, N. (2018). Bioplastic Polyhydroxyalkanoate (PHA): Recent Advances in Modification and Medical Applications. doi:10.20944/preprints201808.0271.v1 | es_ES |
dc.description.references | Petchwattana, N., & Covavisaruch, S. (2014). Mechanical and Morphological Properties of Wood Plastic Biocomposites Prepared from Toughened Poly(lactic acid) and Rubber Wood Sawdust (Hevea brasiliensis). Journal of Bionic Engineering, 11(4), 630-637. doi:10.1016/s1672-6529(14)60074-3 | es_ES |
dc.description.references | Summerscales, J., Dissanayake, N., Virk, A., & Hall, W. (2010). A review of bast fibres and their composites. Part 2 – Composites. Composites Part A: Applied Science and Manufacturing, 41(10), 1336-1344. doi:10.1016/j.compositesa.2010.05.020 | es_ES |
dc.description.references | Avérous, L. (2004). Biodegradable Multiphase Systems Based on Plasticized Starch: A Review. Journal of Macromolecular Science, Part C: Polymer Reviews, 44(3), 231-274. doi:10.1081/mc-200029326 | es_ES |
dc.description.references | Yang, Y., Ke, S., Ren, L., Wang, Y., Li, Y., & Huang, H. (2012). Dielectric spectroscopy of biodegradable poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) films. European Polymer Journal, 48(1), 79-85. doi:10.1016/j.eurpolymj.2011.10.002 | es_ES |
dc.description.references | Liao, Q., Noda, I., & Frank, C. W. (2009). Melt viscoelasticity of biodegradable poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) copolymers. Polymer, 50(25), 6139-6148. doi:10.1016/j.polymer.2009.10.049 | es_ES |
dc.description.references | Alata, H., Aoyama, T., & Inoue, Y. (2007). Effect of Aging on the Mechanical Properties of Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate). Macromolecules, 40(13), 4546-4551. doi:10.1021/ma070418i | es_ES |
dc.description.references | Misra, S. K., Valappil, S. P., Roy, I., & Boccaccini, A. R. (2006). Polyhydroxyalkanoate (PHA)/Inorganic Phase Composites for Tissue Engineering Applications. Biomacromolecules, 7(8), 2249-2258. doi:10.1021/bm060317c | es_ES |
dc.description.references | Mahmood, H., Pegoretti, A., Brusa, R. S., Ceccato, R., Penasa, L., Tarter, S., & Checchetto, R. (2020). Molecular transport through 3-hydroxybutyrate co-3-hydroxyhexanoate biopolymer films with dispersed graphene oxide nanoparticles: Gas barrier, structural and mechanical properties. Polymer Testing, 81, 106181. doi:10.1016/j.polymertesting.2019.106181 | es_ES |
dc.description.references | Corre, Y.-M., Bruzaud, S., Audic, J.-L., & Grohens, Y. (2012). Morphology and functional properties of commercial polyhydroxyalkanoates: A comprehensive and comparative study. Polymer Testing, 31(2), 226-235. doi:10.1016/j.polymertesting.2011.11.002 | es_ES |
dc.description.references | Watanabe, T., He, Y., Fukuchi, T., & Inoue, Y. (2001). Comonomer Compositional Distribution and Thermal Characteristics of Bacterially Synthesized Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate)s. Macromolecular Bioscience, 1(2), 75-83. doi:10.1002/1616-5195(20010301)1:2<75::aid-mabi75>3.0.co;2-q | es_ES |
dc.description.references | Oyama, T., Kobayashi, S., Okura, T., Sato, S., Tajima, K., Isono, T., & Satoh, T. (2019). Biodegradable Compatibilizers for Poly(hydroxyalkanoate)/Poly(ε-caprolactone) Blends through Click Reactions with End-Functionalized Microbial Poly(hydroxyalkanoate)s. ACS Sustainable Chemistry & Engineering, 7(8), 7969-7978. doi:10.1021/acssuschemeng.9b00897 | es_ES |
dc.description.references | Sato, H., Nakamura, M., Padermshoke, A., Yamaguchi, H., Terauchi, H., Ekgasit, S., … Ozaki, Y. (2004). Thermal Behavior and Molecular Interaction of Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) Studied by Wide-Angle X-ray Diffraction. Macromolecules, 37(10), 3763-3769. doi:10.1021/ma049863t | es_ES |
dc.description.references | Hu, Y., Zhang, J., Sato, H., Noda, I., & Ozaki, Y. (2007). Multiple melting behavior of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) investigated by differential scanning calorimetry and infrared spectroscopy. Polymer, 48(16), 4777-4785. doi:10.1016/j.polymer.2007.06.016 | es_ES |
dc.description.references | Xu, P., Cao, Y., Lv, P., Ma, P., Dong, W., Bai, H., … Chen, M. (2018). Enhanced crystallization kinetics of bacterially synthesized poly(3-hydroxybutyrate-co-3-hydroxyhexanate) with structural optimization of oxalamide compounds as nucleators. Polymer Degradation and Stability, 154, 170-176. doi:10.1016/j.polymdegradstab.2018.06.001 | es_ES |
dc.description.references | Tham, W. L., Ishak, Z. A. M., & Chow, W. S. (2014). Water Absorption and Hygrothermal Aging Behaviors of SEBS-g-MAH Toughened Poly(lactic acid)/Halloysite Nanocomposites. Polymer-Plastics Technology and Engineering, 53(5), 472-480. doi:10.1080/03602559.2013.845208 | es_ES |
dc.description.references | Tham, W. L., Poh, B. T., Mohd Ishak, Z. A., & Chow, W. S. (2014). Water Absorption Kinetics and Hygrothermal Aging of Poly(lactic acid) Containing Halloysite Nanoclay and Maleated Rubber. Journal of Polymers and the Environment, 23(2), 242-250. doi:10.1007/s10924-014-0699-y | es_ES |
dc.description.references | Arbelaiz, A., Fernández, B., Ramos, J. A., Retegi, A., Llano-Ponte, R., & Mondragon, I. (2005). Mechanical properties of short flax fibre bundle/polypropylene composites: Influence of matrix/fibre modification, fibre content, water uptake and recycling. Composites Science and Technology, 65(10), 1582-1592. doi:10.1016/j.compscitech.2005.01.008 | es_ES |
dc.description.references | Deroiné, M., Le Duigou, A., Corre, Y.-M., Le Gac, P.-Y., Davies, P., César, G., & Bruzaud, S. (2014). Accelerated ageing of polylactide in aqueous environments: Comparative study between distilled water and seawater. Polymer Degradation and Stability, 108, 319-329. doi:10.1016/j.polymdegradstab.2014.01.020 | es_ES |
dc.description.references | Gil-Castell, O., Badia, J. D., Kittikorn, T., Strömberg, E., Martínez-Felipe, A., Ek, M., … Ribes-Greus, A. (2014). Hydrothermal ageing of polylactide/sisal biocomposites. Studies of water absorption behaviour and Physico-Chemical performance. Polymer Degradation and Stability, 108, 212-222. doi:10.1016/j.polymdegradstab.2014.06.010 | es_ES |
dc.description.references | Petinakis, E., Yu, L., Edward, G., Dean, K., Liu, H., & Scully, A. D. (2009). Effect of Matrix–Particle Interfacial Adhesion on the Mechanical Properties of Poly(lactic acid)/Wood-Flour Micro-Composites. Journal of Polymers and the Environment, 17(2), 83-94. doi:10.1007/s10924-009-0124-0 | es_ES |
dc.description.references | Pilla, S., Gong, S., O’Neill, E., Rowell, R. M., & Krzysik, A. M. (2008). Polylactide-pine wood flour composites. Polymer Engineering & Science, 48(3), 578-587. doi:10.1002/pen.20971 | es_ES |
dc.description.references | Shah, B. L., Selke, S. E., Walters, M. B., & Heiden, P. A. (2008). Effects of wood flour and chitosan on mechanical, chemical, and thermal properties of polylactide. Polymer Composites, 29(6), 655-663. doi:10.1002/pc.20415 | es_ES |
dc.description.references | Balart, J. F., García-Sanoguera, D., Balart, R., Boronat, T., & Sánchez-Nacher, L. (2016). Manufacturing and properties of biobased thermoplastic composites from poly(lactid acid) and hazelnut shell wastes. Polymer Composites, 39(3), 848-857. doi:10.1002/pc.24007 | es_ES |
dc.description.references | Ling, S. L., Koay, S. C., Chan, M. Y., Tshai, K. Y., Chantara, T. R., & Pang, M. M. (2019). Wood Plastic Composites Produced from Postconsumer Recycled Polystyrene and Coconut Shell: Effect of Coupling Agent and Processing Aid on Tensile, Thermal, and Morphological Properties. Polymer Engineering & Science, 60(1), 202-210. doi:10.1002/pen.25273 | es_ES |
dc.description.references | Quitadamo, A., Massardier, V., & Valente, M. (2019). Eco-Friendly Approach and Potential Biodegradable Polymer Matrix for WPC Composite Materials in Outdoor Application. International Journal of Polymer Science, 2019, 1-9. doi:10.1155/2019/3894370 | es_ES |
dc.description.references | Salasinska, K., Polka, M., Gloc, M., & Ryszkowska, J. (2016). Natural fiber composites: the effect of the kind and content of filler on the dimensional and fire stability of polyolefin-based composites. Polimery, 61(04), 255-265. doi:10.14314/polimery.2016.255 | es_ES |
dc.description.references | Wang, X., Yu, Z., & McDonald, A. G. (2019). Effect of Different Reinforcing Fillers on Properties, Interfacial Compatibility and Weatherability of Wood-plastic Composites. Journal of Bionic Engineering, 16(2), 337-353. doi:10.1007/s42235-019-0029-0 | es_ES |
dc.description.references | Yussuf, A. A., Massoumi, I., & Hassan, A. (2010). Comparison of Polylactic Acid/Kenaf and Polylactic Acid/Rise Husk Composites: The Influence of the Natural Fibers on the Mechanical, Thermal and Biodegradability Properties. Journal of Polymers and the Environment, 18(3), 422-429. doi:10.1007/s10924-010-0185-0 | es_ES |
dc.description.references | Kuciel, S., Jakubowska, P., & Kuźniar, P. (2014). A study on the mechanical properties and the influence of water uptake and temperature on biocomposites based on polyethylene from renewable sources. Composites Part B: Engineering, 64, 72-77. doi:10.1016/j.compositesb.2014.03.026 | es_ES |
dc.description.references | Liminana, P., Quiles-Carrillo, L., Boronat, T., Balart, R., & Montanes, N. (2018). The Effect of Varying Almond Shell Flour (ASF) Loading in Composites with Poly(Butylene Succinate (PBS) Matrix Compatibilized with Maleinized Linseed Oil (MLO). Materials, 11(11), 2179. doi:10.3390/ma11112179 | es_ES |
dc.description.references | Quiles-Carrillo, L., Montanes, N., Garcia-Garcia, D., Carbonell-Verdu, A., Balart, R., & Torres-Giner, S. (2018). Effect of different compatibilizers on injection-molded green composite pieces based on polylactide filled with almond shell flour. Composites Part B: Engineering, 147, 76-85. doi:10.1016/j.compositesb.2018.04.017 | es_ES |
dc.description.references | Mathew, A. P., Oksman, K., & Sain, M. (2005). Mechanical properties of biodegradable composites from poly lactic acid (PLA) and microcrystalline cellulose (MCC). Journal of Applied Polymer Science, 97(5), 2014-2025. doi:10.1002/app.21779 | es_ES |
dc.description.references | Ghaffar, S. H., Madyan, O. A., Fan, M., & Corker, J. (2018). The Influence of Additives on the Interfacial Bonding Mechanisms Between Natural Fibre and Biopolymer Composites. Macromolecular Research, 26(10), 851-863. doi:10.1007/s13233-018-6119-8 | es_ES |
dc.description.references | Tserki, V., Matzinos, P., Kokkou, S., & Panayiotou, C. (2005). Novel biodegradable composites based on treated lignocellulosic waste flour as filler. Part I. Surface chemical modification and characterization of waste flour. Composites Part A: Applied Science and Manufacturing, 36(7), 965-974. doi:10.1016/j.compositesa.2004.11.010 | es_ES |
dc.description.references | Rezaee Niaraki, P., & Krause, A. (2019). Correlation between physical bonding and mechanical properties of wood plastic composites: Part 1: interaction of chemical and mechanical treatments on physical properties. Journal of Adhesion Science and Technology, 34(7), 744-755. doi:10.1080/01694243.2019.1683325 | es_ES |
dc.description.references | Åkesson, D., Fazelinejad, S., Skrifvars, V.-V., & Skrifvars, M. (2016). Mechanical recycling of polylactic acid composites reinforced with wood fibres by multiple extrusion and hydrothermal ageing. Journal of Reinforced Plastics and Composites, 35(16), 1248-1259. doi:10.1177/0731684416647507 | es_ES |
dc.description.references | Torres-Giner, S., Montanes, N., Fenollar, O., García-Sanoguera, D., & Balart, R. (2016). Development and optimization of renewable vinyl plastisol/wood flour composites exposed to ultraviolet radiation. Materials & Design, 108, 648-658. doi:10.1016/j.matdes.2016.07.037 | es_ES |
dc.description.references | Juárez, D., Ferrand, S., Fenollar, O., Fombuena, V., & Balart, R. (2011). Improvement of thermal inertia of styrene–ethylene/butylene–styrene (SEBS) polymers by addition of microencapsulated phase change materials (PCMs). European Polymer Journal, 47(2), 153-161. doi:10.1016/j.eurpolymj.2010.11.004 | es_ES |
dc.description.references | Pracella, M., Haque, M. M.-U., & Alvarez, V. (2010). Functionalization, Compatibilization and Properties of Polyolefin Composites with Natural Fibers. Polymers, 2(4), 554-574. doi:10.3390/polym2040554 | es_ES |
dc.description.references | Chabros, A., Gawdzik, B., Podkościelna, B., Goliszek, M., & Pączkowski, P. (2019). Composites of Unsaturated Polyester Resins with Microcrystalline Cellulose and Its Derivatives. Materials, 13(1), 62. doi:10.3390/ma13010062 | es_ES |
dc.description.references | Mokhena, T., Sefadi, J., Sadiku, E., John, M., Mochane, M., & Mtibe, A. (2018). Thermoplastic Processing of PLA/Cellulose Nanomaterials Composites. Polymers, 10(12), 1363. doi:10.3390/polym10121363 | es_ES |
dc.description.references | Patwa, R., Saha, N., Sáha, P., & Katiyar, V. (2019). Biocomposites of poly(lactic acid) and lactic acid oligomer‐grafted bacterial cellulose: It’s preparation and characterization. Journal of Applied Polymer Science, 136(35), 47903. doi:10.1002/app.47903 | es_ES |
dc.description.references | Tripathi, N., & Katiyar, V. (2018). Lactic acid oligomer (OLLA) grafted gum arabic based green adhesive for structural applications. International Journal of Biological Macromolecules, 120, 711-720. doi:10.1016/j.ijbiomac.2018.07.199 | es_ES |
dc.description.references | Lascano, D., Moraga, G., Ivorra-Martinez, J., Rojas-Lema, S., Torres-Giner, S., Balart, R., … Quiles-Carrillo, L. (2019). Development of Injection-Molded Polylactide Pieces with High Toughness by the Addition of Lactic Acid Oligomer and Characterization of Their Shape Memory Behavior. Polymers, 11(12), 2099. doi:10.3390/polym11122099 | es_ES |
dc.description.references | Zhou, Y., Huang, Z., Diao, X., Weng, Y., & Wang, Y.-Z. (2015). Characterization of the effect of REC on the compatibility of PHBH and PLA. Polymer Testing, 42, 17-25. doi:10.1016/j.polymertesting.2014.12.014 | es_ES |
dc.description.references | Asrar, J., Valentin, H. E., Berger, P. A., Tran, M., Padgette, S. R., & Garbow, J. R. (2002). Biosynthesis and Properties of Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) Polymers. Biomacromolecules, 3(5), 1006-1012. doi:10.1021/bm025543a | es_ES |
dc.description.references | Ding, C., Cheng, B., & Wu, Q. (2010). DSC analysis of isothermally melt-crystallized bacterial poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) films. Journal of Thermal Analysis and Calorimetry, 103(3), 1001-1006. doi:10.1007/s10973-010-1135-8 | es_ES |
dc.description.references | Jacquel, N., Tajima, K., Nakamura, N., Miyagawa, T., Pan, P., & Inoue, Y. (2009). Effect of orotic acid as a nucleating agent on the crystallization of bacterial poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) copolymers. Journal of Applied Polymer Science, 114(2), 1287-1294. doi:10.1002/app.30587 | es_ES |
dc.description.references | Quiles-Carrillo, L., Duart, S., Montanes, N., Torres-Giner, S., & Balart, R. (2018). Enhancement of the mechanical and thermal properties of injection-molded polylactide parts by the addition of acrylated epoxidized soybean oil. Materials & Design, 140, 54-63. doi:10.1016/j.matdes.2017.11.031 | es_ES |
dc.description.references | Burgos, N., Martino, V. P., & Jiménez, A. (2013). Characterization and ageing study of poly(lactic acid) films plasticized with oligomeric lactic acid. Polymer Degradation and Stability, 98(2), 651-658. doi:10.1016/j.polymdegradstab.2012.11.009 | es_ES |
dc.description.references | Armentano, I., Fortunati, E., Burgos, N., Dominici, F., Luzi, F., Fiori, S., … Kenny, J. M. (2015). Processing and characterization of plasticized PLA/PHB blends for biodegradable multiphase systems. Express Polymer Letters, 9(7), 583-596. doi:10.3144/expresspolymlett.2015.55 | es_ES |
dc.description.references | Amor, A., Okhay, N., Guinault, A., Miquelard-Garnier, G., Sollogoub, C., & Gervais, M. (2018). Combined compatibilization and plasticization effect of low molecular weight poly(lactic acid) in poly(lactic acid)/poly(3-hydroxybutyrate-co-3-hydroxyvalerate) blends. Express Polymer Letters, 12(2), 114-125. doi:10.3144/expresspolymlett.2018.10 | es_ES |
dc.description.references | Ferri, J. M., Garcia-Garcia, D., Montanes, N., Fenollar, O., & Balart, R. (2017). The effect of maleinized linseed oil as biobased plasticizer in poly(lactic acid)-based formulations. Polymer International, 66(6), 882-891. doi:10.1002/pi.5329 | es_ES |
dc.description.references | Garcia-Campo, M., Quiles-Carrillo, L., Masia, J., Reig-Pérez, M., Montanes, N., & Balart, R. (2017). Environmentally Friendly Compatibilizers from Soybean Oil for Ternary Blends of Poly(lactic acid)-PLA, Poly(ε-caprolactone)-PCL and Poly(3-hydroxybutyrate)-PHB. Materials, 10(11), 1339. doi:10.3390/ma10111339 | es_ES |
dc.description.references | Thomas, S., Shumilova, A. A., Kiselev, E. G., Baranovsky, S. V., Vasiliev, A. D., Nemtsev, I. V., … Volova, T. G. (2020). Thermal, mechanical and biodegradation studies of biofiller based poly-3-hydroxybutyrate biocomposites. International Journal of Biological Macromolecules, 155, 1373-1384. doi:10.1016/j.ijbiomac.2019.11.112 | es_ES |
dc.description.references | Gong, X., Gao, X., Tang, C. Y., Law, W.-C., Chen, L., Hu, T., … Rao, N. (2017). Compatibilization of poly(lactic acid)/high impact polystyrene interface using copolymer poly(stylene-ran-methyl acrylate). Journal of Applied Polymer Science, 135(6), 45799. doi:10.1002/app.45799 | es_ES |
dc.description.references | Hosoda, N., Tsujimoto, T., & Uyama, H. (2013). Green Composite of Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) Reinforced with Porous Cellulose. ACS Sustainable Chemistry & Engineering, 2(2), 248-253. doi:10.1021/sc400290y | es_ES |
dc.description.references | Perinović, S., Andričić, B., & Erceg, M. (2010). Thermal properties of poly(l-lactide)/olive stone flour composites. Thermochimica Acta, 510(1-2), 97-102. doi:10.1016/j.tca.2010.07.002 | es_ES |
dc.description.references | Liminana, P., Garcia-Sanoguera, D., Quiles-Carrillo, L., Balart, R., & Montanes, N. (2019). Optimization of Maleinized Linseed Oil Loading as a Biobased Compatibilizer in Poly(Butylene Succinate) Composites with Almond Shell Flour. Materials, 12(5), 685. doi:10.3390/ma12050685 | es_ES |
dc.description.references | Yin, C., Wang, Z., Luo, Y., Li, J., Zhou, Y., Zhang, X., … He, C. (2018). Thermal annealing on free volumes, crystallinity and proton conductivity of Nafion membranes. Journal of Physics and Chemistry of Solids, 120, 71-78. doi:10.1016/j.jpcs.2018.04.028 | es_ES |
dc.description.references | Oliver-Ortega, H., Méndez, J., Espinach, F., Tarrés, Q., Ardanuy, M., & Mutjé, P. (2018). Impact Strength and Water Uptake Behaviors of Fully Bio-Based PA11-SGW Composites. Polymers, 10(7), 717. doi:10.3390/polym10070717 | es_ES |
dc.description.references | Pfister, D. P., & Larock, R. C. (2010). Thermophysical properties of conjugated soybean oil/corn stover biocomposites. Bioresource Technology, 101(15), 6200-6206. doi:10.1016/j.biortech.2010.02.070 | es_ES |
dc.subject.ods | 08.- Fomentar el crecimiento económico sostenido, inclusivo y sostenible, el empleo pleno y productivo, y el trabajo decente para todos | es_ES |
dc.subject.ods | 15.- Proteger, restaurar y promover la utilización sostenible de los ecosistemas terrestres, gestionar de manera sostenible los bosques, combatir la desertificación y detener y revertir la degradación de la tierra, y frenar la pérdida de diversidad biológica | es_ES |
dc.subject.ods | 09.- Desarrollar infraestructuras resilientes, promover la industrialización inclusiva y sostenible, y fomentar la innovación | es_ES |