- -

Development and Characterization of Sustainable Composites from Bacterial Polyester Poly(3-Hydroxybutyrate-co-3-hydroxyhexanoate) and Almond Shell Flour by Reactive Extrusion with Oligomers of Lactic Acid

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Development and Characterization of Sustainable Composites from Bacterial Polyester Poly(3-Hydroxybutyrate-co-3-hydroxyhexanoate) and Almond Shell Flour by Reactive Extrusion with Oligomers of Lactic Acid

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Ivorra-Martínez, Juan es_ES
dc.contributor.author Manuel-Mañogil, Jose es_ES
dc.contributor.author Boronat, Teodomiro es_ES
dc.contributor.author Sanchez-Nacher, Lourdes es_ES
dc.contributor.author Balart, Rafael es_ES
dc.contributor.author Quiles-Carrillo, Luis es_ES
dc.date.accessioned 2021-03-01T08:09:08Z
dc.date.available 2021-03-01T08:09:08Z
dc.date.issued 2020-05 es_ES
dc.identifier.uri http://hdl.handle.net/10251/162581
dc.description.abstract [EN] Eco-effcient Wood Plastic Composites (WPCs) have been obtained using poly(hydroxybutyrate-co-hexanoate) (PHBH) as the polymer matrix, and almond shell flour (ASF), a by-product from the agro-food industry, as filler/reinforcement. These WPCs were prepared with different amounts of lignocellulosic fillers (wt %), namely 10, 20 and 30. The mechanical characterization of these WPCs showed an important increase in their stiffness with increasing the wt % ASF content. In addition, lower tensile strength and impact strength were obtained. The field emission scanning electron microscopy (FESEM) study revealed the lack of continuity and poor adhesion among the PHBH-ASF interface. Even with the only addition of 10 wt % ASF, these green composites become highly brittle. Nevertheless, for real applications, the WPC with 30 wt % ASF is the most attracting material since it contributes to lowering the overall cost of the WPC and can be manufactured by injection moulding, but its properties are really compromised due to the lack of compatibility between the hydrophobic PHBH matrix and the hydrophilic lignocellulosic filler. To minimize this phenomenon, 10 and 20 phr (weight parts of OLA-Oligomeric Lactic Acid per one hundred weight parts of PHBH) were added to PHBH/ASF (30 wt % ASF) composites. Differential scanning calorimetry (DSC) suggested poor plasticization effect of OLA on PHBH-ASF composites. Nevertheless, the most important property OLA can provide to PHBH/ASF composites is somewhat compatibilization since some mechanical ductile properties are improved with OLA addition. The study by thermomechanical analysis (TMA), confirmed the increase of the coeffcient of linear thermal expansion (CLTE) with increasing OLA content. The dynamic mechanical characterization (DTMA), revealed higher storage modulus, E¿, with increasing ASF. Moreover, DTMA results confirmed poor plasticization of OLA on PHBH-ASF (30 wt % ASF) composites, but interesting compatibilization effects. es_ES
dc.description.sponsorship This research work was funded by the Spanish Ministry of Science, Innovation, and Universities (MICIU) project number MAT2017-84909-C2-2-R. This work was supported by the POLISABIO program grant number (2019-A02). J. Ivorra-Martinez is the recipient of an FPI grant from Universitat Politècnica de València (PAID-2019). L. Quiles-Carrillo wants to thank GV for his FPI grant (ACIF/2016/182) and MECD for his FPU grant (FPU15/03812). Microscopy services at UPV are acknowledged for their help in collecting and analyzing FESEM images. es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Polymers es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject PHBH es_ES
dc.subject Almond shell flour es_ES
dc.subject Mechanical properties es_ES
dc.subject Thermal characterization es_ES
dc.subject WPCs es_ES
dc.subject.classification CIENCIA DE LOS MATERIALES E INGENIERIA METALURGICA es_ES
dc.subject.classification INGENIERIA DE LOS PROCESOS DE FABRICACION es_ES
dc.title Development and Characterization of Sustainable Composites from Bacterial Polyester Poly(3-Hydroxybutyrate-co-3-hydroxyhexanoate) and Almond Shell Flour by Reactive Extrusion with Oligomers of Lactic Acid es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/polym12051097 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//ACIF%2F2016%2F182/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UPV//PAID-01-19-04/ES/Procesado y optimización de materiales avanzados derivados de estructuras proteicas y componentes lignocelulósicos/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MECD//FPU15%2F03812/ES/FPU15%2F03812/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/MAT2017-84909-C2-2-R/ES/PROCESADO Y OPTIMIZACION DE MATERIALES AVANZADOS DERIVADOS DE ESTRUCTURAS PROTEICAS Y COMPONENTES LIGNOCELULOSICOS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UPV//UPV-FISABIO-2019-A02/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto de Tecnología de Materiales - Institut de Tecnologia de Materials es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials es_ES
dc.description.bibliographicCitation Ivorra-Martínez, J.; Manuel-Mañogil, J.; Boronat, T.; Sanchez-Nacher, L.; Balart, R.; Quiles-Carrillo, L. (2020). Development and Characterization of Sustainable Composites from Bacterial Polyester Poly(3-Hydroxybutyrate-co-3-hydroxyhexanoate) and Almond Shell Flour by Reactive Extrusion with Oligomers of Lactic Acid. Polymers. 12(5):1-23. https://doi.org/10.3390/polym12051097 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/polym12051097 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 23 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 12 es_ES
dc.description.issue 5 es_ES
dc.identifier.eissn 2073-4360 es_ES
dc.identifier.pmid 32403400 es_ES
dc.identifier.pmcid PMC7285348 es_ES
dc.relation.pasarela S\413130 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder Universitat Politècnica de València es_ES
dc.contributor.funder Ministerio de Educación, Cultura y Deporte es_ES
dc.contributor.funder Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunitat Valenciana es_ES
dc.description.references Carbonell-Verdu, A., Bernardi, L., Garcia-Garcia, D., Sanchez-Nacher, L., & Balart, R. (2015). Development of environmentally friendly composite matrices from epoxidized cottonseed oil. European Polymer Journal, 63, 1-10. doi:10.1016/j.eurpolymj.2014.11.043 es_ES
dc.description.references España, J. M., Samper, M. D., Fages, E., Sánchez-Nácher, L., & Balart, R. (2013). Investigation of the effect of different silane coupling agents on mechanical performance of basalt fiber composite laminates with biobased epoxy matrices. Polymer Composites, 34(3), 376-381. doi:10.1002/pc.22421 es_ES
dc.description.references Basalp, D., Tihminlioglu, F., Sofuoglu, S. C., Inal, F., & Sofuoglu, A. (2020). Utilization of Municipal Plastic and Wood Waste in Industrial Manufacturing of Wood Plastic Composites. Waste and Biomass Valorization, 11(10), 5419-5430. doi:10.1007/s12649-020-00986-7 es_ES
dc.description.references SINGH, S., & MOHANTY, A. (2007). Wood fiber reinforced bacterial bioplastic composites: Fabrication and performance evaluation. Composites Science and Technology, 67(9), 1753-1763. doi:10.1016/j.compscitech.2006.11.009 es_ES
dc.description.references Mukheem, A., Hossain, M. M., Shahabuddin, S., Muthoosamy, K., Manickam, S., Sudesh, K., … Sridewi, N. (2018). Bioplastic Polyhydroxyalkanoate (PHA): Recent Advances in Modification and Medical Applications. doi:10.20944/preprints201808.0271.v1 es_ES
dc.description.references Petchwattana, N., & Covavisaruch, S. (2014). Mechanical and Morphological Properties of Wood Plastic Biocomposites Prepared from Toughened Poly(lactic acid) and Rubber Wood Sawdust (Hevea brasiliensis). Journal of Bionic Engineering, 11(4), 630-637. doi:10.1016/s1672-6529(14)60074-3 es_ES
dc.description.references Summerscales, J., Dissanayake, N., Virk, A., & Hall, W. (2010). A review of bast fibres and their composites. Part 2 – Composites. Composites Part A: Applied Science and Manufacturing, 41(10), 1336-1344. doi:10.1016/j.compositesa.2010.05.020 es_ES
dc.description.references Avérous, L. (2004). Biodegradable Multiphase Systems Based on Plasticized Starch: A Review. Journal of Macromolecular Science, Part C: Polymer Reviews, 44(3), 231-274. doi:10.1081/mc-200029326 es_ES
dc.description.references Yang, Y., Ke, S., Ren, L., Wang, Y., Li, Y., & Huang, H. (2012). Dielectric spectroscopy of biodegradable poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) films. European Polymer Journal, 48(1), 79-85. doi:10.1016/j.eurpolymj.2011.10.002 es_ES
dc.description.references Liao, Q., Noda, I., & Frank, C. W. (2009). Melt viscoelasticity of biodegradable poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) copolymers. Polymer, 50(25), 6139-6148. doi:10.1016/j.polymer.2009.10.049 es_ES
dc.description.references Alata, H., Aoyama, T., & Inoue, Y. (2007). Effect of Aging on the Mechanical Properties of Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate). Macromolecules, 40(13), 4546-4551. doi:10.1021/ma070418i es_ES
dc.description.references Misra, S. K., Valappil, S. P., Roy, I., & Boccaccini, A. R. (2006). Polyhydroxyalkanoate (PHA)/Inorganic Phase Composites for Tissue Engineering Applications. Biomacromolecules, 7(8), 2249-2258. doi:10.1021/bm060317c es_ES
dc.description.references Mahmood, H., Pegoretti, A., Brusa, R. S., Ceccato, R., Penasa, L., Tarter, S., & Checchetto, R. (2020). Molecular transport through 3-hydroxybutyrate co-3-hydroxyhexanoate biopolymer films with dispersed graphene oxide nanoparticles: Gas barrier, structural and mechanical properties. Polymer Testing, 81, 106181. doi:10.1016/j.polymertesting.2019.106181 es_ES
dc.description.references Corre, Y.-M., Bruzaud, S., Audic, J.-L., & Grohens, Y. (2012). Morphology and functional properties of commercial polyhydroxyalkanoates: A comprehensive and comparative study. Polymer Testing, 31(2), 226-235. doi:10.1016/j.polymertesting.2011.11.002 es_ES
dc.description.references Watanabe, T., He, Y., Fukuchi, T., & Inoue, Y. (2001). Comonomer Compositional Distribution and Thermal Characteristics of Bacterially Synthesized Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate)s. Macromolecular Bioscience, 1(2), 75-83. doi:10.1002/1616-5195(20010301)1:2<75::aid-mabi75>3.0.co;2-q es_ES
dc.description.references Oyama, T., Kobayashi, S., Okura, T., Sato, S., Tajima, K., Isono, T., & Satoh, T. (2019). Biodegradable Compatibilizers for Poly(hydroxyalkanoate)/Poly(ε-caprolactone) Blends through Click Reactions with End-Functionalized Microbial Poly(hydroxyalkanoate)s. ACS Sustainable Chemistry & Engineering, 7(8), 7969-7978. doi:10.1021/acssuschemeng.9b00897 es_ES
dc.description.references Sato, H., Nakamura, M., Padermshoke, A., Yamaguchi, H., Terauchi, H., Ekgasit, S., … Ozaki, Y. (2004). Thermal Behavior and Molecular Interaction of Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) Studied by Wide-Angle X-ray Diffraction. Macromolecules, 37(10), 3763-3769. doi:10.1021/ma049863t es_ES
dc.description.references Hu, Y., Zhang, J., Sato, H., Noda, I., & Ozaki, Y. (2007). Multiple melting behavior of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) investigated by differential scanning calorimetry and infrared spectroscopy. Polymer, 48(16), 4777-4785. doi:10.1016/j.polymer.2007.06.016 es_ES
dc.description.references Xu, P., Cao, Y., Lv, P., Ma, P., Dong, W., Bai, H., … Chen, M. (2018). Enhanced crystallization kinetics of bacterially synthesized poly(3-hydroxybutyrate-co-3-hydroxyhexanate) with structural optimization of oxalamide compounds as nucleators. Polymer Degradation and Stability, 154, 170-176. doi:10.1016/j.polymdegradstab.2018.06.001 es_ES
dc.description.references Tham, W. L., Ishak, Z. A. M., & Chow, W. S. (2014). Water Absorption and Hygrothermal Aging Behaviors of SEBS-g-MAH Toughened Poly(lactic acid)/Halloysite Nanocomposites. Polymer-Plastics Technology and Engineering, 53(5), 472-480. doi:10.1080/03602559.2013.845208 es_ES
dc.description.references Tham, W. L., Poh, B. T., Mohd Ishak, Z. A., & Chow, W. S. (2014). Water Absorption Kinetics and Hygrothermal Aging of Poly(lactic acid) Containing Halloysite Nanoclay and Maleated Rubber. Journal of Polymers and the Environment, 23(2), 242-250. doi:10.1007/s10924-014-0699-y es_ES
dc.description.references Arbelaiz, A., Fernández, B., Ramos, J. A., Retegi, A., Llano-Ponte, R., & Mondragon, I. (2005). Mechanical properties of short flax fibre bundle/polypropylene composites: Influence of matrix/fibre modification, fibre content, water uptake and recycling. Composites Science and Technology, 65(10), 1582-1592. doi:10.1016/j.compscitech.2005.01.008 es_ES
dc.description.references Deroiné, M., Le Duigou, A., Corre, Y.-M., Le Gac, P.-Y., Davies, P., César, G., & Bruzaud, S. (2014). Accelerated ageing of polylactide in aqueous environments: Comparative study between distilled water and seawater. Polymer Degradation and Stability, 108, 319-329. doi:10.1016/j.polymdegradstab.2014.01.020 es_ES
dc.description.references Gil-Castell, O., Badia, J. D., Kittikorn, T., Strömberg, E., Martínez-Felipe, A., Ek, M., … Ribes-Greus, A. (2014). Hydrothermal ageing of polylactide/sisal biocomposites. Studies of water absorption behaviour and Physico-Chemical performance. Polymer Degradation and Stability, 108, 212-222. doi:10.1016/j.polymdegradstab.2014.06.010 es_ES
dc.description.references Petinakis, E., Yu, L., Edward, G., Dean, K., Liu, H., & Scully, A. D. (2009). Effect of Matrix–Particle Interfacial Adhesion on the Mechanical Properties of Poly(lactic acid)/Wood-Flour Micro-Composites. Journal of Polymers and the Environment, 17(2), 83-94. doi:10.1007/s10924-009-0124-0 es_ES
dc.description.references Pilla, S., Gong, S., O’Neill, E., Rowell, R. M., & Krzysik, A. M. (2008). Polylactide-pine wood flour composites. Polymer Engineering & Science, 48(3), 578-587. doi:10.1002/pen.20971 es_ES
dc.description.references Shah, B. L., Selke, S. E., Walters, M. B., & Heiden, P. A. (2008). Effects of wood flour and chitosan on mechanical, chemical, and thermal properties of polylactide. Polymer Composites, 29(6), 655-663. doi:10.1002/pc.20415 es_ES
dc.description.references Balart, J. F., García-Sanoguera, D., Balart, R., Boronat, T., & Sánchez-Nacher, L. (2016). Manufacturing and properties of biobased thermoplastic composites from poly(lactid acid) and hazelnut shell wastes. Polymer Composites, 39(3), 848-857. doi:10.1002/pc.24007 es_ES
dc.description.references Ling, S. L., Koay, S. C., Chan, M. Y., Tshai, K. Y., Chantara, T. R., & Pang, M. M. (2019). Wood Plastic Composites Produced from Postconsumer Recycled Polystyrene and Coconut Shell: Effect of Coupling Agent and Processing Aid on Tensile, Thermal, and Morphological Properties. Polymer Engineering & Science, 60(1), 202-210. doi:10.1002/pen.25273 es_ES
dc.description.references Quitadamo, A., Massardier, V., & Valente, M. (2019). Eco-Friendly Approach and Potential Biodegradable Polymer Matrix for WPC Composite Materials in Outdoor Application. International Journal of Polymer Science, 2019, 1-9. doi:10.1155/2019/3894370 es_ES
dc.description.references Salasinska, K., Polka, M., Gloc, M., & Ryszkowska, J. (2016). Natural fiber composites: the effect of the kind and content of filler on the dimensional and fire stability of polyolefin-based composites. Polimery, 61(04), 255-265. doi:10.14314/polimery.2016.255 es_ES
dc.description.references Wang, X., Yu, Z., & McDonald, A. G. (2019). Effect of Different Reinforcing Fillers on Properties, Interfacial Compatibility and Weatherability of Wood-plastic Composites. Journal of Bionic Engineering, 16(2), 337-353. doi:10.1007/s42235-019-0029-0 es_ES
dc.description.references Yussuf, A. A., Massoumi, I., & Hassan, A. (2010). Comparison of Polylactic Acid/Kenaf and Polylactic Acid/Rise Husk Composites: The Influence of the Natural Fibers on the Mechanical, Thermal and Biodegradability Properties. Journal of Polymers and the Environment, 18(3), 422-429. doi:10.1007/s10924-010-0185-0 es_ES
dc.description.references Kuciel, S., Jakubowska, P., & Kuźniar, P. (2014). A study on the mechanical properties and the influence of water uptake and temperature on biocomposites based on polyethylene from renewable sources. Composites Part B: Engineering, 64, 72-77. doi:10.1016/j.compositesb.2014.03.026 es_ES
dc.description.references Liminana, P., Quiles-Carrillo, L., Boronat, T., Balart, R., & Montanes, N. (2018). The Effect of Varying Almond Shell Flour (ASF) Loading in Composites with Poly(Butylene Succinate (PBS) Matrix Compatibilized with Maleinized Linseed Oil (MLO). Materials, 11(11), 2179. doi:10.3390/ma11112179 es_ES
dc.description.references Quiles-Carrillo, L., Montanes, N., Garcia-Garcia, D., Carbonell-Verdu, A., Balart, R., & Torres-Giner, S. (2018). Effect of different compatibilizers on injection-molded green composite pieces based on polylactide filled with almond shell flour. Composites Part B: Engineering, 147, 76-85. doi:10.1016/j.compositesb.2018.04.017 es_ES
dc.description.references Mathew, A. P., Oksman, K., & Sain, M. (2005). Mechanical properties of biodegradable composites from poly lactic acid (PLA) and microcrystalline cellulose (MCC). Journal of Applied Polymer Science, 97(5), 2014-2025. doi:10.1002/app.21779 es_ES
dc.description.references Ghaffar, S. H., Madyan, O. A., Fan, M., & Corker, J. (2018). The Influence of Additives on the Interfacial Bonding Mechanisms Between Natural Fibre and Biopolymer Composites. Macromolecular Research, 26(10), 851-863. doi:10.1007/s13233-018-6119-8 es_ES
dc.description.references Tserki, V., Matzinos, P., Kokkou, S., & Panayiotou, C. (2005). Novel biodegradable composites based on treated lignocellulosic waste flour as filler. Part I. Surface chemical modification and characterization of waste flour. Composites Part A: Applied Science and Manufacturing, 36(7), 965-974. doi:10.1016/j.compositesa.2004.11.010 es_ES
dc.description.references Rezaee Niaraki, P., & Krause, A. (2019). Correlation between physical bonding and mechanical properties of wood plastic composites: Part 1: interaction of chemical and mechanical treatments on physical properties. Journal of Adhesion Science and Technology, 34(7), 744-755. doi:10.1080/01694243.2019.1683325 es_ES
dc.description.references Åkesson, D., Fazelinejad, S., Skrifvars, V.-V., & Skrifvars, M. (2016). Mechanical recycling of polylactic acid composites reinforced with wood fibres by multiple extrusion and hydrothermal ageing. Journal of Reinforced Plastics and Composites, 35(16), 1248-1259. doi:10.1177/0731684416647507 es_ES
dc.description.references Torres-Giner, S., Montanes, N., Fenollar, O., García-Sanoguera, D., & Balart, R. (2016). Development and optimization of renewable vinyl plastisol/wood flour composites exposed to ultraviolet radiation. Materials & Design, 108, 648-658. doi:10.1016/j.matdes.2016.07.037 es_ES
dc.description.references Juárez, D., Ferrand, S., Fenollar, O., Fombuena, V., & Balart, R. (2011). Improvement of thermal inertia of styrene–ethylene/butylene–styrene (SEBS) polymers by addition of microencapsulated phase change materials (PCMs). European Polymer Journal, 47(2), 153-161. doi:10.1016/j.eurpolymj.2010.11.004 es_ES
dc.description.references Pracella, M., Haque, M. M.-U., & Alvarez, V. (2010). Functionalization, Compatibilization and Properties of Polyolefin Composites with Natural Fibers. Polymers, 2(4), 554-574. doi:10.3390/polym2040554 es_ES
dc.description.references Chabros, A., Gawdzik, B., Podkościelna, B., Goliszek, M., & Pączkowski, P. (2019). Composites of Unsaturated Polyester Resins with Microcrystalline Cellulose and Its Derivatives. Materials, 13(1), 62. doi:10.3390/ma13010062 es_ES
dc.description.references Mokhena, T., Sefadi, J., Sadiku, E., John, M., Mochane, M., & Mtibe, A. (2018). Thermoplastic Processing of PLA/Cellulose Nanomaterials Composites. Polymers, 10(12), 1363. doi:10.3390/polym10121363 es_ES
dc.description.references Patwa, R., Saha, N., Sáha, P., & Katiyar, V. (2019). Biocomposites of poly(lactic acid) and lactic acid oligomer‐grafted bacterial cellulose: It’s preparation and characterization. Journal of Applied Polymer Science, 136(35), 47903. doi:10.1002/app.47903 es_ES
dc.description.references Tripathi, N., & Katiyar, V. (2018). Lactic acid oligomer (OLLA) grafted gum arabic based green adhesive for structural applications. International Journal of Biological Macromolecules, 120, 711-720. doi:10.1016/j.ijbiomac.2018.07.199 es_ES
dc.description.references Lascano, D., Moraga, G., Ivorra-Martinez, J., Rojas-Lema, S., Torres-Giner, S., Balart, R., … Quiles-Carrillo, L. (2019). Development of Injection-Molded Polylactide Pieces with High Toughness by the Addition of Lactic Acid Oligomer and Characterization of Their Shape Memory Behavior. Polymers, 11(12), 2099. doi:10.3390/polym11122099 es_ES
dc.description.references Zhou, Y., Huang, Z., Diao, X., Weng, Y., & Wang, Y.-Z. (2015). Characterization of the effect of REC on the compatibility of PHBH and PLA. Polymer Testing, 42, 17-25. doi:10.1016/j.polymertesting.2014.12.014 es_ES
dc.description.references Asrar, J., Valentin, H. E., Berger, P. A., Tran, M., Padgette, S. R., & Garbow, J. R. (2002). Biosynthesis and Properties of Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) Polymers. Biomacromolecules, 3(5), 1006-1012. doi:10.1021/bm025543a es_ES
dc.description.references Ding, C., Cheng, B., & Wu, Q. (2010). DSC analysis of isothermally melt-crystallized bacterial poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) films. Journal of Thermal Analysis and Calorimetry, 103(3), 1001-1006. doi:10.1007/s10973-010-1135-8 es_ES
dc.description.references Jacquel, N., Tajima, K., Nakamura, N., Miyagawa, T., Pan, P., & Inoue, Y. (2009). Effect of orotic acid as a nucleating agent on the crystallization of bacterial poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) copolymers. Journal of Applied Polymer Science, 114(2), 1287-1294. doi:10.1002/app.30587 es_ES
dc.description.references Quiles-Carrillo, L., Duart, S., Montanes, N., Torres-Giner, S., & Balart, R. (2018). Enhancement of the mechanical and thermal properties of injection-molded polylactide parts by the addition of acrylated epoxidized soybean oil. Materials & Design, 140, 54-63. doi:10.1016/j.matdes.2017.11.031 es_ES
dc.description.references Burgos, N., Martino, V. P., & Jiménez, A. (2013). Characterization and ageing study of poly(lactic acid) films plasticized with oligomeric lactic acid. Polymer Degradation and Stability, 98(2), 651-658. doi:10.1016/j.polymdegradstab.2012.11.009 es_ES
dc.description.references Armentano, I., Fortunati, E., Burgos, N., Dominici, F., Luzi, F., Fiori, S., … Kenny, J. M. (2015). Processing and characterization of plasticized PLA/PHB blends for biodegradable multiphase systems. Express Polymer Letters, 9(7), 583-596. doi:10.3144/expresspolymlett.2015.55 es_ES
dc.description.references Amor, A., Okhay, N., Guinault, A., Miquelard-Garnier, G., Sollogoub, C., & Gervais, M. (2018). Combined compatibilization and plasticization effect of low molecular weight poly(lactic acid) in poly(lactic acid)/poly(3-hydroxybutyrate-co-3-hydroxyvalerate) blends. Express Polymer Letters, 12(2), 114-125. doi:10.3144/expresspolymlett.2018.10 es_ES
dc.description.references Ferri, J. M., Garcia-Garcia, D., Montanes, N., Fenollar, O., & Balart, R. (2017). The effect of maleinized linseed oil as biobased plasticizer in poly(lactic acid)-based formulations. Polymer International, 66(6), 882-891. doi:10.1002/pi.5329 es_ES
dc.description.references Garcia-Campo, M., Quiles-Carrillo, L., Masia, J., Reig-Pérez, M., Montanes, N., & Balart, R. (2017). Environmentally Friendly Compatibilizers from Soybean Oil for Ternary Blends of Poly(lactic acid)-PLA, Poly(ε-caprolactone)-PCL and Poly(3-hydroxybutyrate)-PHB. Materials, 10(11), 1339. doi:10.3390/ma10111339 es_ES
dc.description.references Thomas, S., Shumilova, A. A., Kiselev, E. G., Baranovsky, S. V., Vasiliev, A. D., Nemtsev, I. V., … Volova, T. G. (2020). Thermal, mechanical and biodegradation studies of biofiller based poly-3-hydroxybutyrate biocomposites. International Journal of Biological Macromolecules, 155, 1373-1384. doi:10.1016/j.ijbiomac.2019.11.112 es_ES
dc.description.references Gong, X., Gao, X., Tang, C. Y., Law, W.-C., Chen, L., Hu, T., … Rao, N. (2017). Compatibilization of poly(lactic acid)/high impact polystyrene interface using copolymer poly(stylene-ran-methyl acrylate). Journal of Applied Polymer Science, 135(6), 45799. doi:10.1002/app.45799 es_ES
dc.description.references Hosoda, N., Tsujimoto, T., & Uyama, H. (2013). Green Composite of Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) Reinforced with Porous Cellulose. ACS Sustainable Chemistry & Engineering, 2(2), 248-253. doi:10.1021/sc400290y es_ES
dc.description.references Perinović, S., Andričić, B., & Erceg, M. (2010). Thermal properties of poly(l-lactide)/olive stone flour composites. Thermochimica Acta, 510(1-2), 97-102. doi:10.1016/j.tca.2010.07.002 es_ES
dc.description.references Liminana, P., Garcia-Sanoguera, D., Quiles-Carrillo, L., Balart, R., & Montanes, N. (2019). Optimization of Maleinized Linseed Oil Loading as a Biobased Compatibilizer in Poly(Butylene Succinate) Composites with Almond Shell Flour. Materials, 12(5), 685. doi:10.3390/ma12050685 es_ES
dc.description.references Yin, C., Wang, Z., Luo, Y., Li, J., Zhou, Y., Zhang, X., … He, C. (2018). Thermal annealing on free volumes, crystallinity and proton conductivity of Nafion membranes. Journal of Physics and Chemistry of Solids, 120, 71-78. doi:10.1016/j.jpcs.2018.04.028 es_ES
dc.description.references Oliver-Ortega, H., Méndez, J., Espinach, F., Tarrés, Q., Ardanuy, M., & Mutjé, P. (2018). Impact Strength and Water Uptake Behaviors of Fully Bio-Based PA11-SGW Composites. Polymers, 10(7), 717. doi:10.3390/polym10070717 es_ES
dc.description.references Pfister, D. P., & Larock, R. C. (2010). Thermophysical properties of conjugated soybean oil/corn stover biocomposites. Bioresource Technology, 101(15), 6200-6206. doi:10.1016/j.biortech.2010.02.070 es_ES
dc.subject.ods 08.- Fomentar el crecimiento económico sostenido, inclusivo y sostenible, el empleo pleno y productivo, y el trabajo decente para todos es_ES
dc.subject.ods 15.- Proteger, restaurar y promover la utilización sostenible de los ecosistemas terrestres, gestionar de manera sostenible los bosques, combatir la desertificación y detener y revertir la degradación de la tierra, y frenar la pérdida de diversidad biológica es_ES
dc.subject.ods 09.- Desarrollar infraestructuras resilientes, promover la industrialización inclusiva y sostenible, y fomentar la innovación es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem