- -

Sound Levels Forecasting in an Acoustic Sensor Network Using a Deep Neural Network

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Sound Levels Forecasting in an Acoustic Sensor Network Using a Deep Neural Network

Show full item record

Navarro, JM.; Martínez-España, R.; Bueno-Crespo, A.; Cecilia-Canales, JM.; Martínez, R. (2020). Sound Levels Forecasting in an Acoustic Sensor Network Using a Deep Neural Network. Sensors. 20(3):1-16. https://doi.org/10.3390/s20030903

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/162585

Files in this item

Item Metadata

Title: Sound Levels Forecasting in an Acoustic Sensor Network Using a Deep Neural Network
Author: Navarro, Juan M. Martínez-España, Raquel Bueno-Crespo, Andrés Cecilia-Canales, José María Martínez, Ramón
UPV Unit: Universitat Politècnica de València. Departamento de Informática de Sistemas y Computadores - Departament d'Informàtica de Sistemes i Computadors
Issued date:
Abstract:
[EN] Wireless acoustic sensor networks are nowadays an essential tool for noise pollution monitoring and managing in cities. The increased computing capacity of the nodes that create the network is allowing the addition ...[+]
Subjects: Acoustics , Wireless sensor networks , Smart cities , Deep learning , Long short-term memory , Temporal forecast
Copyrigths: Reconocimiento (by)
Source:
Sensors. (eissn: 1424-8220 )
DOI: 10.3390/s20030903
Publisher:
MDPI AG
Publisher version: https://doi.org/10.3390/s20030903
Project ID:
info:eu-repo/grantAgreement/f SéNeCa//20813%2FPI%2F18/
info:eu-repo/grantAgreement/AEI//RYC-2018-025580-I/
Thanks:
This work was partially supported by the Fundacion Seneca del Centro de Coordinacion de la Investigacion de la Region de Murcia under Project 20813/PI/18.
Type: Artículo

References

Hornikx, M. (2016). Ten questions concerning computational urban acoustics. Building and Environment, 106, 409-421. doi:10.1016/j.buildenv.2016.06.028

Murphy, E., & King, E. A. (2010). Strategic environmental noise mapping: Methodological issues concerning the implementation of the EU Environmental Noise Directive and their policy implications. Environment International, 36(3), 290-298. doi:10.1016/j.envint.2009.11.006

Arana, M., San Martin, R., San Martin, M. L., & Aramendía, E. (2009). Strategic noise map of a major road carried out with two environmental prediction software packages. Environmental Monitoring and Assessment, 163(1-4), 503-513. doi:10.1007/s10661-009-0853-5 [+]
Hornikx, M. (2016). Ten questions concerning computational urban acoustics. Building and Environment, 106, 409-421. doi:10.1016/j.buildenv.2016.06.028

Murphy, E., & King, E. A. (2010). Strategic environmental noise mapping: Methodological issues concerning the implementation of the EU Environmental Noise Directive and their policy implications. Environment International, 36(3), 290-298. doi:10.1016/j.envint.2009.11.006

Arana, M., San Martin, R., San Martin, M. L., & Aramendía, E. (2009). Strategic noise map of a major road carried out with two environmental prediction software packages. Environmental Monitoring and Assessment, 163(1-4), 503-513. doi:10.1007/s10661-009-0853-5

Garg, N., & Maji, S. (2014). A critical review of principal traffic noise models: Strategies and implications. Environmental Impact Assessment Review, 46, 68-81. doi:10.1016/j.eiar.2014.02.001

Steele, C. (2001). A critical review of some traffic noise prediction models. Applied Acoustics, 62(3), 271-287. doi:10.1016/s0003-682x(00)00030-x

Li, B., Tao, S., Dawson, R. W., Cao, J., & Lam, K. (2002). A GIS based road traffic noise prediction model. Applied Acoustics, 63(6), 679-691. doi:10.1016/s0003-682x(01)00066-4

VAN LEEUWEN, H. J. A. (2000). RAILWAY NOISE PREDICTION MODELS: A COMPARISON. Journal of Sound and Vibration, 231(3), 975-987. doi:10.1006/jsvi.1999.2570

Lui, W. K., Li, K. M., Ng, P. L., & Frommer, G. H. (2006). A comparative study of different numerical models for predicting train noise in high-rise cities. Applied Acoustics, 67(5), 432-449. doi:10.1016/j.apacoust.2005.08.005

Van Leeuwen, J. J. A. (1996). NOISE PREDICTIONS MODELS TO DETERMINE THE EFFECT OF BARRIERS PLACED ALONGSIDE RAILWAY LINES. Journal of Sound and Vibration, 193(1), 269-276. doi:10.1006/jsvi.1996.0267

Oerlemans, S., & Schepers, J. G. (2009). Prediction of Wind Turbine Noise and Validation against Experiment. International Journal of Aeroacoustics, 8(6), 555-584. doi:10.1260/147547209789141489

Tadamasa, A., & Zangeneh, M. (2011). Numerical prediction of wind turbine noise. Renewable Energy, 36(7), 1902-1912. doi:10.1016/j.renene.2010.11.036

Maisonneuve, N., Stevens, M., & Ochab, B. (2010). Participatory noise pollution monitoring using mobile phones. Information Polity, 15(1,2), 51-71. doi:10.3233/ip-2010-0200

Akyildiz, I. F., Su, W., Sankarasubramaniam, Y., & Cayirci, E. (2002). Wireless sensor networks: a survey. Computer Networks, 38(4), 393-422. doi:10.1016/s1389-1286(01)00302-4

Peckens, C., Porter, C., & Rink, T. (2018). Wireless Sensor Networks for Long-Term Monitoring of Urban Noise. Sensors, 18(9), 3161. doi:10.3390/s18093161

Alías, F., & Alsina-Pagès, R. M. (2019). Review of Wireless Acoustic Sensor Networks for Environmental Noise Monitoring in Smart Cities. Journal of Sensors, 2019, 1-13. doi:10.1155/2019/7634860

Mydlarz, C., Salamon, J., & Bello, J. P. (2017). The implementation of low-cost urban acoustic monitoring devices. Applied Acoustics, 117, 207-218. doi:10.1016/j.apacoust.2016.06.010

Navarro, J. M., Tomas-Gabarron, J. B., & Escolano, J. (2017). A Big Data Framework for Urban Noise Analysis and Management in Smart Cities. Acta Acustica united with Acustica, 103(4), 552-560. doi:10.3813/aaa.919084

Längkvist, M., Karlsson, L., & Loutfi, A. (2014). A review of unsupervised feature learning and deep learning for time-series modeling. Pattern Recognition Letters, 42, 11-24. doi:10.1016/j.patrec.2014.01.008

Che, Z., Purushotham, S., Cho, K., Sontag, D., & Liu, Y. (2018). Recurrent Neural Networks for Multivariate Time Series with Missing Values. Scientific Reports, 8(1). doi:10.1038/s41598-018-24271-9

Kim, H.-G., & Kim, J. Y. (2017). Environmental sound event detection in wireless acoustic sensor networks for home telemonitoring. China Communications, 14(9), 1-10. doi:10.1109/cc.2017.8068759

Luque, A., Romero-Lemos, J., Carrasco, A., & Barbancho, J. (2018). Improving Classification Algorithms by Considering Score Series in Wireless Acoustic Sensor Networks. Sensors, 18(8), 2465. doi:10.3390/s18082465

Zhang, Y., Fu, Y., & Wang, R. (2018). Collaborative representation based classification for vehicle recognition in acoustic sensor networks. Journal of Computational Methods in Sciences and Engineering, 18(2), 349-358. doi:10.3233/jcm-180794

Cobos, M., Perez-Solano, J. J., Felici-Castell, S., Segura, J., & Navarro, J. M. (2014). Cumulative-Sum-Based Localization of Sound Events in Low-Cost Wireless Acoustic Sensor Networks. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 22(12), 1792-1802. doi:10.1109/taslp.2014.2351132

Sevillano, X., Socoró, J. C., Alías, F., Bellucci, P., Peruzzi, L., Radaelli, S., … Zambon, G. (2016). DYNAMAP – Development of low cost sensors networks for real time noise mapping. Noise Mapping, 3(1). doi:10.1515/noise-2016-0013

Segura-Garcia, J., Navarro-Ruiz, J., Perez-Solano, J., Montoya-Belmonte, J., Felici-Castell, S., Cobos, M., & Torres-Aranda, A. (2018). Spatio-Temporal Analysis of Urban Acoustic Environments with Binaural Psycho-Acoustical Considerations for IoT-Based Applications. Sensors, 18(3), 690. doi:10.3390/s18030690

Bello, J. P., Silva, C., Nov, O., Dubois, R. L., Arora, A., Salamon, J., … Doraiswamy, H. (2019). SONYC. Communications of the ACM, 62(2), 68-77. doi:10.1145/3224204

Socoró, J., Alías, F., & Alsina-Pagès, R. (2017). An Anomalous Noise Events Detector for Dynamic Road Traffic Noise Mapping in Real-Life Urban and Suburban Environments. Sensors, 17(10), 2323. doi:10.3390/s17102323

Yu, L., & Kang, J. (2009). Modeling subjective evaluation of soundscape quality in urban open spaces: An artificial neural network approach. The Journal of the Acoustical Society of America, 126(3), 1163-1174. doi:10.1121/1.3183377

Lopez-Ballester, J., Pastor-Aparicio, A., Segura-Garcia, J., Felici-Castell, S., & Cobos, M. (2019). Computation of Psycho-Acoustic Annoyance Using Deep Neural Networks. Applied Sciences, 9(15), 3136. doi:10.3390/app9153136

Mansourkhaki, A., Berangi, M., Haghiri, M., & Haghani, M. (2018). A NEURAL NETWORK NOISE PREDICTION MODEL FOR TEHRAN URBAN ROADS. Journal of Environmental Engineering and Landscape Management, 26(2), 88-97. doi:10.3846/16486897.2017.1356327

Pedersen, K., Transtrum, M. K., Gee, K. L., Butler, B. A., James, M. M., & Salton, A. R. (2018). Machine learning-based ensemble model predictions of outdoor ambient sound levels. 2019 International Congress on Ultrasonics. doi:10.1121/2.0001056

Torija, A. J., Ruiz, D. P., & Ramos-Ridao, A. F. (2012). Use of back-propagation neural networks to predict both level and temporal-spectral composition of sound pressure in urban sound environments. Building and Environment, 52, 45-56. doi:10.1016/j.buildenv.2011.12.024

Garg, N., Soni, K., Saxena, T. K., & Maji, S. (2015). Applications of AutoRegressive Integrated Moving Average (ARIMA) approach in time-series prediction of traffic noise pollution. Noise Control Engineering Journal, 63(2), 182-194. doi:10.3397/1/376317

Tong, W., Li, L., Zhou, X., Hamilton, A., & Zhang, K. (2019). Deep learning PM2.5 concentrations with bidirectional LSTM RNN. Air Quality, Atmosphere & Health, 12(4), 411-423. doi:10.1007/s11869-018-0647-4

Krishan, M., Jha, S., Das, J., Singh, A., Goyal, M. K., & Sekar, C. (2019). Air quality modelling using long short-term memory (LSTM) over NCT-Delhi, India. Air Quality, Atmosphere & Health, 12(8), 899-908. doi:10.1007/s11869-019-00696-7

Noriega-Linares, J. E., Rodriguez-Mayol, A., Cobos, M., Segura-Garcia, J., Felici-Castell, S., & Navarro, J. M. (2017). A Wireless Acoustic Array System for Binaural Loudness Evaluation in Cities. IEEE Sensors Journal, 17(21), 7043-7052. doi:10.1109/jsen.2017.2751665

Raspberry PI https://www.raspberrypi.org

Legates, D. R., & McCabe, G. J. (1999). Evaluating the use of «goodness-of-fit» Measures in hydrologic and hydroclimatic model validation. Water Resources Research, 35(1), 233-241. doi:10.1029/1998wr900018

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record