Hornikx, M. (2016). Ten questions concerning computational urban acoustics. Building and Environment, 106, 409-421. doi:10.1016/j.buildenv.2016.06.028
Murphy, E., & King, E. A. (2010). Strategic environmental noise mapping: Methodological issues concerning the implementation of the EU Environmental Noise Directive and their policy implications. Environment International, 36(3), 290-298. doi:10.1016/j.envint.2009.11.006
Arana, M., San Martin, R., San Martin, M. L., & Aramendía, E. (2009). Strategic noise map of a major road carried out with two environmental prediction software packages. Environmental Monitoring and Assessment, 163(1-4), 503-513. doi:10.1007/s10661-009-0853-5
[+]
Hornikx, M. (2016). Ten questions concerning computational urban acoustics. Building and Environment, 106, 409-421. doi:10.1016/j.buildenv.2016.06.028
Murphy, E., & King, E. A. (2010). Strategic environmental noise mapping: Methodological issues concerning the implementation of the EU Environmental Noise Directive and their policy implications. Environment International, 36(3), 290-298. doi:10.1016/j.envint.2009.11.006
Arana, M., San Martin, R., San Martin, M. L., & Aramendía, E. (2009). Strategic noise map of a major road carried out with two environmental prediction software packages. Environmental Monitoring and Assessment, 163(1-4), 503-513. doi:10.1007/s10661-009-0853-5
Garg, N., & Maji, S. (2014). A critical review of principal traffic noise models: Strategies and implications. Environmental Impact Assessment Review, 46, 68-81. doi:10.1016/j.eiar.2014.02.001
Steele, C. (2001). A critical review of some traffic noise prediction models. Applied Acoustics, 62(3), 271-287. doi:10.1016/s0003-682x(00)00030-x
Li, B., Tao, S., Dawson, R. W., Cao, J., & Lam, K. (2002). A GIS based road traffic noise prediction model. Applied Acoustics, 63(6), 679-691. doi:10.1016/s0003-682x(01)00066-4
VAN LEEUWEN, H. J. A. (2000). RAILWAY NOISE PREDICTION MODELS: A COMPARISON. Journal of Sound and Vibration, 231(3), 975-987. doi:10.1006/jsvi.1999.2570
Lui, W. K., Li, K. M., Ng, P. L., & Frommer, G. H. (2006). A comparative study of different numerical models for predicting train noise in high-rise cities. Applied Acoustics, 67(5), 432-449. doi:10.1016/j.apacoust.2005.08.005
Van Leeuwen, J. J. A. (1996). NOISE PREDICTIONS MODELS TO DETERMINE THE EFFECT OF BARRIERS PLACED ALONGSIDE RAILWAY LINES. Journal of Sound and Vibration, 193(1), 269-276. doi:10.1006/jsvi.1996.0267
Oerlemans, S., & Schepers, J. G. (2009). Prediction of Wind Turbine Noise and Validation against Experiment. International Journal of Aeroacoustics, 8(6), 555-584. doi:10.1260/147547209789141489
Tadamasa, A., & Zangeneh, M. (2011). Numerical prediction of wind turbine noise. Renewable Energy, 36(7), 1902-1912. doi:10.1016/j.renene.2010.11.036
Maisonneuve, N., Stevens, M., & Ochab, B. (2010). Participatory noise pollution monitoring using mobile phones. Information Polity, 15(1,2), 51-71. doi:10.3233/ip-2010-0200
Akyildiz, I. F., Su, W., Sankarasubramaniam, Y., & Cayirci, E. (2002). Wireless sensor networks: a survey. Computer Networks, 38(4), 393-422. doi:10.1016/s1389-1286(01)00302-4
Peckens, C., Porter, C., & Rink, T. (2018). Wireless Sensor Networks for Long-Term Monitoring of Urban Noise. Sensors, 18(9), 3161. doi:10.3390/s18093161
Alías, F., & Alsina-Pagès, R. M. (2019). Review of Wireless Acoustic Sensor Networks for Environmental Noise Monitoring in Smart Cities. Journal of Sensors, 2019, 1-13. doi:10.1155/2019/7634860
Mydlarz, C., Salamon, J., & Bello, J. P. (2017). The implementation of low-cost urban acoustic monitoring devices. Applied Acoustics, 117, 207-218. doi:10.1016/j.apacoust.2016.06.010
Navarro, J. M., Tomas-Gabarron, J. B., & Escolano, J. (2017). A Big Data Framework for Urban Noise Analysis and Management in Smart Cities. Acta Acustica united with Acustica, 103(4), 552-560. doi:10.3813/aaa.919084
Längkvist, M., Karlsson, L., & Loutfi, A. (2014). A review of unsupervised feature learning and deep learning for time-series modeling. Pattern Recognition Letters, 42, 11-24. doi:10.1016/j.patrec.2014.01.008
Che, Z., Purushotham, S., Cho, K., Sontag, D., & Liu, Y. (2018). Recurrent Neural Networks for Multivariate Time Series with Missing Values. Scientific Reports, 8(1). doi:10.1038/s41598-018-24271-9
Kim, H.-G., & Kim, J. Y. (2017). Environmental sound event detection in wireless acoustic sensor networks for home telemonitoring. China Communications, 14(9), 1-10. doi:10.1109/cc.2017.8068759
Luque, A., Romero-Lemos, J., Carrasco, A., & Barbancho, J. (2018). Improving Classification Algorithms by Considering Score Series in Wireless Acoustic Sensor Networks. Sensors, 18(8), 2465. doi:10.3390/s18082465
Zhang, Y., Fu, Y., & Wang, R. (2018). Collaborative representation based classification for vehicle recognition in acoustic sensor networks. Journal of Computational Methods in Sciences and Engineering, 18(2), 349-358. doi:10.3233/jcm-180794
Cobos, M., Perez-Solano, J. J., Felici-Castell, S., Segura, J., & Navarro, J. M. (2014). Cumulative-Sum-Based Localization of Sound Events in Low-Cost Wireless Acoustic Sensor Networks. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 22(12), 1792-1802. doi:10.1109/taslp.2014.2351132
Sevillano, X., Socoró, J. C., Alías, F., Bellucci, P., Peruzzi, L., Radaelli, S., … Zambon, G. (2016). DYNAMAP – Development of low cost sensors networks for real time noise mapping. Noise Mapping, 3(1). doi:10.1515/noise-2016-0013
Segura-Garcia, J., Navarro-Ruiz, J., Perez-Solano, J., Montoya-Belmonte, J., Felici-Castell, S., Cobos, M., & Torres-Aranda, A. (2018). Spatio-Temporal Analysis of Urban Acoustic Environments with Binaural Psycho-Acoustical Considerations for IoT-Based Applications. Sensors, 18(3), 690. doi:10.3390/s18030690
Bello, J. P., Silva, C., Nov, O., Dubois, R. L., Arora, A., Salamon, J., … Doraiswamy, H. (2019). SONYC. Communications of the ACM, 62(2), 68-77. doi:10.1145/3224204
Socoró, J., Alías, F., & Alsina-Pagès, R. (2017). An Anomalous Noise Events Detector for Dynamic Road Traffic Noise Mapping in Real-Life Urban and Suburban Environments. Sensors, 17(10), 2323. doi:10.3390/s17102323
Yu, L., & Kang, J. (2009). Modeling subjective evaluation of soundscape quality in urban open spaces: An artificial neural network approach. The Journal of the Acoustical Society of America, 126(3), 1163-1174. doi:10.1121/1.3183377
Lopez-Ballester, J., Pastor-Aparicio, A., Segura-Garcia, J., Felici-Castell, S., & Cobos, M. (2019). Computation of Psycho-Acoustic Annoyance Using Deep Neural Networks. Applied Sciences, 9(15), 3136. doi:10.3390/app9153136
Mansourkhaki, A., Berangi, M., Haghiri, M., & Haghani, M. (2018). A NEURAL NETWORK NOISE PREDICTION MODEL FOR TEHRAN URBAN ROADS. Journal of Environmental Engineering and Landscape Management, 26(2), 88-97. doi:10.3846/16486897.2017.1356327
Pedersen, K., Transtrum, M. K., Gee, K. L., Butler, B. A., James, M. M., & Salton, A. R. (2018). Machine learning-based ensemble model predictions of outdoor ambient sound levels. 2019 International Congress on Ultrasonics. doi:10.1121/2.0001056
Torija, A. J., Ruiz, D. P., & Ramos-Ridao, A. F. (2012). Use of back-propagation neural networks to predict both level and temporal-spectral composition of sound pressure in urban sound environments. Building and Environment, 52, 45-56. doi:10.1016/j.buildenv.2011.12.024
Garg, N., Soni, K., Saxena, T. K., & Maji, S. (2015). Applications of AutoRegressive Integrated Moving Average (ARIMA) approach in time-series prediction of traffic noise pollution. Noise Control Engineering Journal, 63(2), 182-194. doi:10.3397/1/376317
Tong, W., Li, L., Zhou, X., Hamilton, A., & Zhang, K. (2019). Deep learning PM2.5 concentrations with bidirectional LSTM RNN. Air Quality, Atmosphere & Health, 12(4), 411-423. doi:10.1007/s11869-018-0647-4
Krishan, M., Jha, S., Das, J., Singh, A., Goyal, M. K., & Sekar, C. (2019). Air quality modelling using long short-term memory (LSTM) over NCT-Delhi, India. Air Quality, Atmosphere & Health, 12(8), 899-908. doi:10.1007/s11869-019-00696-7
Noriega-Linares, J. E., Rodriguez-Mayol, A., Cobos, M., Segura-Garcia, J., Felici-Castell, S., & Navarro, J. M. (2017). A Wireless Acoustic Array System for Binaural Loudness Evaluation in Cities. IEEE Sensors Journal, 17(21), 7043-7052. doi:10.1109/jsen.2017.2751665
Raspberry PI https://www.raspberrypi.org
Legates, D. R., & McCabe, G. J. (1999). Evaluating the use of «goodness-of-fit» Measures in hydrologic and hydroclimatic model validation. Water Resources Research, 35(1), 233-241. doi:10.1029/1998wr900018
[-]