- -

Sound Levels Forecasting in an Acoustic Sensor Network Using a Deep Neural Network

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Sound Levels Forecasting in an Acoustic Sensor Network Using a Deep Neural Network

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Navarro, Juan M. es_ES
dc.contributor.author Martínez-España, Raquel es_ES
dc.contributor.author Bueno-Crespo, Andrés es_ES
dc.contributor.author Cecilia-Canales, José María es_ES
dc.contributor.author Martínez, Ramón es_ES
dc.date.accessioned 2021-03-01T08:09:18Z
dc.date.available 2021-03-01T08:09:18Z
dc.date.issued 2020-02 es_ES
dc.identifier.uri http://hdl.handle.net/10251/162585
dc.description.abstract [EN] Wireless acoustic sensor networks are nowadays an essential tool for noise pollution monitoring and managing in cities. The increased computing capacity of the nodes that create the network is allowing the addition of processing algorithms and artificial intelligence that provide more information about the sound sources and environment, e.g., detect sound events or calculate loudness. Several models to predict sound pressure levels in cities are available, mainly road, railway and aerial traffic noise. However, these models are mostly based in auxiliary data, e.g., vehicles flow or street geometry, and predict equivalent levels for a temporal long-term. Therefore, forecasting of temporal short-term sound levels could be a helpful tool for urban planners and managers. In this work, a Long Short-Term Memory (LSTM) deep neural network technique is proposed to model temporal behavior of sound levels at a certain location, both sound pressure level and loudness level, in order to predict near-time future values. The proposed technique can be trained for and integrated in every node of a sensor network to provide novel functionalities, e.g., a method of early warning against noise pollution and of backup in case of node or network malfunction. To validate this approach, one-minute period equivalent sound levels, captured in a two-month measurement campaign by a node of a deployed network of acoustic sensors, have been used to train it and to obtain different forecasting models. Assessments of the developed LSTM models and Auto regressive integrated moving average models were performed to predict sound levels for several time periods, from 1 to 60 min. Comparison of the results show that the LSTM models outperform the statistics-based models. In general, the LSTM models achieve a prediction of values with a mean square error less than 4.3 dB for sound pressure level and less than 2 phons for loudness. Moreover, the goodness of fit of the LSTM models and the behavior pattern of the data in terms of prediction of sound levels are satisfactory. es_ES
dc.description.sponsorship This work was partially supported by the Fundacion Seneca del Centro de Coordinacion de la Investigacion de la Region de Murcia under Project 20813/PI/18. es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Sensors es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Acoustics es_ES
dc.subject Wireless sensor networks es_ES
dc.subject Smart cities es_ES
dc.subject Deep learning es_ES
dc.subject Long short-term memory es_ES
dc.subject Temporal forecast es_ES
dc.subject.classification ARQUITECTURA Y TECNOLOGIA DE COMPUTADORES es_ES
dc.title Sound Levels Forecasting in an Acoustic Sensor Network Using a Deep Neural Network es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/s20030903 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/f SéNeCa//20813%2FPI%2F18/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI//RYC-2018-025580-I/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Informática de Sistemas y Computadores - Departament d'Informàtica de Sistemes i Computadors es_ES
dc.description.bibliographicCitation Navarro, JM.; Martínez-España, R.; Bueno-Crespo, A.; Cecilia-Canales, JM.; Martínez, R. (2020). Sound Levels Forecasting in an Acoustic Sensor Network Using a Deep Neural Network. Sensors. 20(3):1-16. https://doi.org/10.3390/s20030903 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/s20030903 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 16 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 20 es_ES
dc.description.issue 3 es_ES
dc.identifier.eissn 1424-8220 es_ES
dc.identifier.pmid 32046231 es_ES
dc.identifier.pmcid PMC7038967 es_ES
dc.relation.pasarela S\403847 es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder Fundación Séneca-Agencia de Ciencia y Tecnología de la Región de Murcia es_ES
dc.description.references Hornikx, M. (2016). Ten questions concerning computational urban acoustics. Building and Environment, 106, 409-421. doi:10.1016/j.buildenv.2016.06.028 es_ES
dc.description.references Murphy, E., & King, E. A. (2010). Strategic environmental noise mapping: Methodological issues concerning the implementation of the EU Environmental Noise Directive and their policy implications. Environment International, 36(3), 290-298. doi:10.1016/j.envint.2009.11.006 es_ES
dc.description.references Arana, M., San Martin, R., San Martin, M. L., & Aramendía, E. (2009). Strategic noise map of a major road carried out with two environmental prediction software packages. Environmental Monitoring and Assessment, 163(1-4), 503-513. doi:10.1007/s10661-009-0853-5 es_ES
dc.description.references Garg, N., & Maji, S. (2014). A critical review of principal traffic noise models: Strategies and implications. Environmental Impact Assessment Review, 46, 68-81. doi:10.1016/j.eiar.2014.02.001 es_ES
dc.description.references Steele, C. (2001). A critical review of some traffic noise prediction models. Applied Acoustics, 62(3), 271-287. doi:10.1016/s0003-682x(00)00030-x es_ES
dc.description.references Li, B., Tao, S., Dawson, R. W., Cao, J., & Lam, K. (2002). A GIS based road traffic noise prediction model. Applied Acoustics, 63(6), 679-691. doi:10.1016/s0003-682x(01)00066-4 es_ES
dc.description.references VAN LEEUWEN, H. J. A. (2000). RAILWAY NOISE PREDICTION MODELS: A COMPARISON. Journal of Sound and Vibration, 231(3), 975-987. doi:10.1006/jsvi.1999.2570 es_ES
dc.description.references Lui, W. K., Li, K. M., Ng, P. L., & Frommer, G. H. (2006). A comparative study of different numerical models for predicting train noise in high-rise cities. Applied Acoustics, 67(5), 432-449. doi:10.1016/j.apacoust.2005.08.005 es_ES
dc.description.references Van Leeuwen, J. J. A. (1996). NOISE PREDICTIONS MODELS TO DETERMINE THE EFFECT OF BARRIERS PLACED ALONGSIDE RAILWAY LINES. Journal of Sound and Vibration, 193(1), 269-276. doi:10.1006/jsvi.1996.0267 es_ES
dc.description.references Oerlemans, S., & Schepers, J. G. (2009). Prediction of Wind Turbine Noise and Validation against Experiment. International Journal of Aeroacoustics, 8(6), 555-584. doi:10.1260/147547209789141489 es_ES
dc.description.references Tadamasa, A., & Zangeneh, M. (2011). Numerical prediction of wind turbine noise. Renewable Energy, 36(7), 1902-1912. doi:10.1016/j.renene.2010.11.036 es_ES
dc.description.references Maisonneuve, N., Stevens, M., & Ochab, B. (2010). Participatory noise pollution monitoring using mobile phones. Information Polity, 15(1,2), 51-71. doi:10.3233/ip-2010-0200 es_ES
dc.description.references Akyildiz, I. F., Su, W., Sankarasubramaniam, Y., & Cayirci, E. (2002). Wireless sensor networks: a survey. Computer Networks, 38(4), 393-422. doi:10.1016/s1389-1286(01)00302-4 es_ES
dc.description.references Peckens, C., Porter, C., & Rink, T. (2018). Wireless Sensor Networks for Long-Term Monitoring of Urban Noise. Sensors, 18(9), 3161. doi:10.3390/s18093161 es_ES
dc.description.references Alías, F., & Alsina-Pagès, R. M. (2019). Review of Wireless Acoustic Sensor Networks for Environmental Noise Monitoring in Smart Cities. Journal of Sensors, 2019, 1-13. doi:10.1155/2019/7634860 es_ES
dc.description.references Mydlarz, C., Salamon, J., & Bello, J. P. (2017). The implementation of low-cost urban acoustic monitoring devices. Applied Acoustics, 117, 207-218. doi:10.1016/j.apacoust.2016.06.010 es_ES
dc.description.references Navarro, J. M., Tomas-Gabarron, J. B., & Escolano, J. (2017). A Big Data Framework for Urban Noise Analysis and Management in Smart Cities. Acta Acustica united with Acustica, 103(4), 552-560. doi:10.3813/aaa.919084 es_ES
dc.description.references Längkvist, M., Karlsson, L., & Loutfi, A. (2014). A review of unsupervised feature learning and deep learning for time-series modeling. Pattern Recognition Letters, 42, 11-24. doi:10.1016/j.patrec.2014.01.008 es_ES
dc.description.references Che, Z., Purushotham, S., Cho, K., Sontag, D., & Liu, Y. (2018). Recurrent Neural Networks for Multivariate Time Series with Missing Values. Scientific Reports, 8(1). doi:10.1038/s41598-018-24271-9 es_ES
dc.description.references Kim, H.-G., & Kim, J. Y. (2017). Environmental sound event detection in wireless acoustic sensor networks for home telemonitoring. China Communications, 14(9), 1-10. doi:10.1109/cc.2017.8068759 es_ES
dc.description.references Luque, A., Romero-Lemos, J., Carrasco, A., & Barbancho, J. (2018). Improving Classification Algorithms by Considering Score Series in Wireless Acoustic Sensor Networks. Sensors, 18(8), 2465. doi:10.3390/s18082465 es_ES
dc.description.references Zhang, Y., Fu, Y., & Wang, R. (2018). Collaborative representation based classification for vehicle recognition in acoustic sensor networks. Journal of Computational Methods in Sciences and Engineering, 18(2), 349-358. doi:10.3233/jcm-180794 es_ES
dc.description.references Cobos, M., Perez-Solano, J. J., Felici-Castell, S., Segura, J., & Navarro, J. M. (2014). Cumulative-Sum-Based Localization of Sound Events in Low-Cost Wireless Acoustic Sensor Networks. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 22(12), 1792-1802. doi:10.1109/taslp.2014.2351132 es_ES
dc.description.references Sevillano, X., Socoró, J. C., Alías, F., Bellucci, P., Peruzzi, L., Radaelli, S., … Zambon, G. (2016). DYNAMAP – Development of low cost sensors networks for real time noise mapping. Noise Mapping, 3(1). doi:10.1515/noise-2016-0013 es_ES
dc.description.references Segura-Garcia, J., Navarro-Ruiz, J., Perez-Solano, J., Montoya-Belmonte, J., Felici-Castell, S., Cobos, M., & Torres-Aranda, A. (2018). Spatio-Temporal Analysis of Urban Acoustic Environments with Binaural Psycho-Acoustical Considerations for IoT-Based Applications. Sensors, 18(3), 690. doi:10.3390/s18030690 es_ES
dc.description.references Bello, J. P., Silva, C., Nov, O., Dubois, R. L., Arora, A., Salamon, J., … Doraiswamy, H. (2019). SONYC. Communications of the ACM, 62(2), 68-77. doi:10.1145/3224204 es_ES
dc.description.references Socoró, J., Alías, F., & Alsina-Pagès, R. (2017). An Anomalous Noise Events Detector for Dynamic Road Traffic Noise Mapping in Real-Life Urban and Suburban Environments. Sensors, 17(10), 2323. doi:10.3390/s17102323 es_ES
dc.description.references Yu, L., & Kang, J. (2009). Modeling subjective evaluation of soundscape quality in urban open spaces: An artificial neural network approach. The Journal of the Acoustical Society of America, 126(3), 1163-1174. doi:10.1121/1.3183377 es_ES
dc.description.references Lopez-Ballester, J., Pastor-Aparicio, A., Segura-Garcia, J., Felici-Castell, S., & Cobos, M. (2019). Computation of Psycho-Acoustic Annoyance Using Deep Neural Networks. Applied Sciences, 9(15), 3136. doi:10.3390/app9153136 es_ES
dc.description.references Mansourkhaki, A., Berangi, M., Haghiri, M., & Haghani, M. (2018). A NEURAL NETWORK NOISE PREDICTION MODEL FOR TEHRAN URBAN ROADS. Journal of Environmental Engineering and Landscape Management, 26(2), 88-97. doi:10.3846/16486897.2017.1356327 es_ES
dc.description.references Pedersen, K., Transtrum, M. K., Gee, K. L., Butler, B. A., James, M. M., & Salton, A. R. (2018). Machine learning-based ensemble model predictions of outdoor ambient sound levels. 2019 International Congress on Ultrasonics. doi:10.1121/2.0001056 es_ES
dc.description.references Torija, A. J., Ruiz, D. P., & Ramos-Ridao, A. F. (2012). Use of back-propagation neural networks to predict both level and temporal-spectral composition of sound pressure in urban sound environments. Building and Environment, 52, 45-56. doi:10.1016/j.buildenv.2011.12.024 es_ES
dc.description.references Garg, N., Soni, K., Saxena, T. K., & Maji, S. (2015). Applications of AutoRegressive Integrated Moving Average (ARIMA) approach in time-series prediction of traffic noise pollution. Noise Control Engineering Journal, 63(2), 182-194. doi:10.3397/1/376317 es_ES
dc.description.references Tong, W., Li, L., Zhou, X., Hamilton, A., & Zhang, K. (2019). Deep learning PM2.5 concentrations with bidirectional LSTM RNN. Air Quality, Atmosphere & Health, 12(4), 411-423. doi:10.1007/s11869-018-0647-4 es_ES
dc.description.references Krishan, M., Jha, S., Das, J., Singh, A., Goyal, M. K., & Sekar, C. (2019). Air quality modelling using long short-term memory (LSTM) over NCT-Delhi, India. Air Quality, Atmosphere & Health, 12(8), 899-908. doi:10.1007/s11869-019-00696-7 es_ES
dc.description.references Noriega-Linares, J. E., Rodriguez-Mayol, A., Cobos, M., Segura-Garcia, J., Felici-Castell, S., & Navarro, J. M. (2017). A Wireless Acoustic Array System for Binaural Loudness Evaluation in Cities. IEEE Sensors Journal, 17(21), 7043-7052. doi:10.1109/jsen.2017.2751665 es_ES
dc.description.references Raspberry PI https://www.raspberrypi.org es_ES
dc.description.references Legates, D. R., & McCabe, G. J. (1999). Evaluating the use of «goodness-of-fit» Measures in hydrologic and hydroclimatic model validation. Water Resources Research, 35(1), 233-241. doi:10.1029/1998wr900018 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem