- -

Risk of increasing temperature due to climate change on highspeed rail network in Spain

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Risk of increasing temperature due to climate change on highspeed rail network in Spain

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Villalba Sanchis, Ignacio es_ES
dc.contributor.author Insa Franco, Ricardo es_ES
dc.contributor.author Martínez Fernández, Pablo es_ES
dc.contributor.author Salvador Zuriaga, Pablo es_ES
dc.contributor.author Font Torres, Juan B. es_ES
dc.date.accessioned 2021-03-03T04:31:35Z
dc.date.available 2021-03-03T04:31:35Z
dc.date.issued 2020-05 es_ES
dc.identifier.issn 1361-9209 es_ES
dc.identifier.uri http://hdl.handle.net/10251/162856
dc.description.abstract [EN] With more than 3,200 km of track, the Spanish high-speed rail network is the longest network in Europe and the second largest in the world after China. Due to its geographical location in southern Europe, the entire network is exposed to periods of elevated temperatures that can cause disturbances and severe disruptions such as rail deformation, or in the worst case, lateral track buckling. In this study, the vulnerability of the current Spanish high-speed rail network is analysed in terms of track buckling failures with a Monte Carlo simulation. Downscaled temperature projections from a range of Global Climate Models (GCMs), under three Representative Concentration Pathways (RCP4.5, RCP6.0 and RCP8.5), were forced in a buckling model and particularized for different segments of the network. With that, the proposed methodology provides the number of rail buckles expected per year by assuming current maintenance standards and procedures. The result reveals significant increase in the occurrence of buckling events for future years, mainly in the central and southern areas of mainland Spain. However, relevant variations are found in different climates and time horizon scenarios in Spain. The anticipated buckling occurrences highlight the vulnerability of the Spanish rail network in the context of global warming scenarios. Overall, the proposed methodology is designed to be applicable in large-scale railway networks to identify potential buckling sites for the purpose of understanding and predicting their behaviour. es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Transportation Research Part D Transport and Environment es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Climate change es_ES
dc.subject Track buckling es_ES
dc.subject Railway infrastructure es_ES
dc.subject Risk assessment es_ES
dc.subject.classification INGENIERIA E INFRAESTRUCTURA DE LOS TRANSPORTES es_ES
dc.title Risk of increasing temperature due to climate change on highspeed rail network in Spain es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.trd.2020.102312 es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería e Infraestructura de los Transportes - Departament d'Enginyeria i Infraestructura dels Transports es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto del Transporte y Territorio - Institut del Transport i Territori es_ES
dc.description.bibliographicCitation Villalba Sanchis, I.; Insa Franco, R.; Martínez Fernández, P.; Salvador Zuriaga, P.; Font Torres, JB. (2020). Risk of increasing temperature due to climate change on highspeed rail network in Spain. Transportation Research Part D Transport and Environment. 82:1-13. https://doi.org/10.1016/j.trd.2020.102312 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.trd.2020.102312 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 13 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 82 es_ES
dc.relation.pasarela S\405971 es_ES
dc.description.references Allen, D.H., Fry, G.T., 2016. Finite element formulation for thermal buckling of rails, CRR Report No. 2016-02, Texas A&M University. es_ES
dc.description.references Baker, C. J., Chapman, L., Quinn, A., & Dobney, K. (2009). Climate change and the railway industry: A review. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 224(3), 519-528. doi:10.1243/09544062jmes1558 es_ES
dc.description.references Bartlett, D.L., 1960. The stability of long welded rails, Civil Eng. and Public Works Review 55(649), Parts I-IV. es_ES
dc.description.references Brands, S., Herrera, S., Fernández, J., & Gutiérrez, J. M. (2013). How well do CMIP5 Earth System Models simulate present climate conditions in Europe and Africa? Climate Dynamics, 41(3-4), 803-817. doi:10.1007/s00382-013-1742-8 es_ES
dc.description.references Castro, M., Martin-Vide, J., Alonso, S., 2005. The climate of Spain: past, present and scenarios for the 21st century. A Preliminary General Assessment of the Impacts in Spain Due to the Effects of Climate Change. 1–62. es_ES
dc.description.references Chapman, L., & Bell, S. J. (2018). High-Resolution Monitoring of Weather Impacts on Infrastructure Networks Using the Internet of Things. Bulletin of the American Meteorological Society, 99(6), 1147-1154. doi:10.1175/bams-d-17-0214.1 es_ES
dc.description.references Chinowsky, P., Helman, J., Gulati, S., Neumann, J., Martinich, J., 2017. Impacts of climate change on operation of the US rail network, Transport Policy, 2017. es_ES
dc.description.references Dobney, K., Baker, C. J., Quinn, A. D., & Chapman, L. (2008). Quantifying the effects of high summer temperatures due to climate change on buckling and rail related delays in south-east United Kingdom. Meteorological Applications, 16(2), 245-251. doi:10.1002/met.114 es_ES
dc.description.references Dobney, K., Baker, C. J., Chapman, L., & Quinn, A. D. (2009). The future cost to the United Kingdom’s railway network of heat-related delays and buckles caused by the predicted increase in high summer temperatures owing to climate change. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 224(1), 25-34. doi:10.1243/09544097jrrt292 es_ES
dc.description.references Duinmeijer, A.G.P. & Bouwknegt, R., 2004. Betrouwbaarheid Railinfrastructuur 2003 (Reliability Rail Infrastructure 2003). Prorail, Utrecht. es_ES
dc.description.references Eddington, R., 2006. The Eddington transport study: the case for action. In: Harrison, P.A., Butterfield, R., Downing, T. (Eds.), 1995, Climate Change and Agriculture in Europe: Assessment of Impacts and Adaptations, Research Report No 9. Environmental Change Unit, University of Oxford. es_ES
dc.description.references Emdal, A.E., Priol, G., Grimstad, G., Lohren, A.H., 2007. Numerical analysis of the effect of sleepers on the lateral displacement of railway track. Numerical Models in Geomechanics. es_ES
dc.description.references Estaire, J., Cuéllar, V., Pardo de Santayana, F., Santana, M., 2018. Testing railway tracks at 1:1 scale at CEDEX Track Box. 360 high-speed magazine, N° 5 - June 2018, pp. 191–217. es_ES
dc.description.references Esveld, C., 2001. Modern railway track. Second ed. The Netherlands: MRT Productions. es_ES
dc.description.references Federal Railroad Administration, Office of Safety Analysis. http://safetydata.fra.dot.gov/officeofsafety/. es_ES
dc.description.references Ferranti, E., Chapman, L., Lowe, C., McCulloch, S., Jaroszweski, D., & Quinn, A. (2016). Heat-Related Failures on Southeast England’s Railway Network: Insights and Implications for Heat Risk Management. Weather, Climate, and Society, 8(2), 177-191. doi:10.1175/wcas-d-15-0068.1 es_ES
dc.description.references Font Tullot, I., 2000. Climatología de España y Portugal. Universidad de Salamanca, Salamanca, p. 428. es_ES
dc.description.references Ford, A., Jenkins, K., Dawson, R., Pregnolato, M., Barr, S., Hall, J., 2015. Simulating impacts of extreme weather events on urban transport infrastructure in the UK. In: Dolan, T., Collins, B. (Eds.), International Symposium for Next Generation Infrastructure Conference Proceedings: 30 September–1 October 2014 International Institute of Applied Systems Analysis (IIASA), Schloss Laxenburg, Vienna, Austria. UCL STEaPP, London. pp. 233–238. es_ES
dc.description.references Françoise, N., Hande, D., 2012. Impacts of Climate Change on transport: a focus on road and rail transport infrastructures. EU Joint Research Centre: Institute for Prospective Technological Studies. es_ES
dc.description.references Hunt, G. A., 1994. An analysis of track buckling risk. Tech. Rep. RR-TM-013, British Railways, 31 pp. es_ES
dc.description.references IPCC, 2014. Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, [Field, C.B., V.R. Barros, D.J. Dokken, K.J. Mach, M.D. Mastrandrea, T.E. Bilir, M. Chatterjee, K.L. Ebi, Y.O. Estrada, R.C. Genova, B. Girma, E.S. Kissel, A.N. Levy, S. MacCracken, P.R. Mastrandrea, and L.L. White (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, USA, 1132 pp. es_ES
dc.description.references Khan, N., Shahid, S., Ahmed, K., Ismail, T., Nawaz, N., & Son, M. (2018). Performance Assessment of General Circulation Model in Simulating Daily Precipitation and Temperature Using Multiple Gridded Datasets. Water, 10(12), 1793. doi:10.3390/w10121793 es_ES
dc.description.references Keellings, D., & Waylen, P. (2014). Investigating teleconnection drivers of bivariate heat waves in Florida using extreme value analysis. Climate Dynamics, 44(11-12), 3383-3391. doi:10.1007/s00382-014-2345-8 es_ES
dc.description.references Koetse, M. J., & Rietveld, P. (2009). The impact of climate change and weather on transport: An overview of empirical findings. Transportation Research Part D: Transport and Environment, 14(3), 205-221. doi:10.1016/j.trd.2008.12.004 es_ES
dc.description.references Lim, N.-H., Park, N.-H., & Kang, Y.-J. (2003). Stability of continuous welded rail track. Computers & Structures, 81(22-23), 2219-2236. doi:10.1016/s0045-7949(03)00287-6 es_ES
dc.description.references Liu, X., Saat, M. R., & Barkan, C. P. L. (2012). Analysis of Causes of Major Train Derailment and Their Effect on Accident Rates. Transportation Research Record: Journal of the Transportation Research Board, 2289(1), 154-163. doi:10.3141/2289-20 es_ES
dc.description.references López, E., Gutiérrez, J., & Gómez, G. (2008). Measuring Regional Cohesion Effects of Large-scale Transport Infrastructure Investments: An Accessibility Approach. European Planning Studies, 16(2), 277-301. doi:10.1080/09654310701814629 es_ES
dc.description.references Meinshausen, M., Smith, S. J., Calvin, K., Daniel, J. S., Kainuma, M. L. T., Lamarque, J.-F., … van Vuuren, D. P. P. (2011). The RCP greenhouse gas concentrations and their extensions from 1765 to 2300. Climatic Change, 109(1-2), 213-241. doi:10.1007/s10584-011-0156-z es_ES
dc.description.references Mendiluce, M., & Schipper, L. (2011). Trends in passenger transport and freight energy use in Spain. Energy Policy, 39(10), 6466-6475. doi:10.1016/j.enpol.2011.07.048 es_ES
dc.description.references Molemaker, R.J., Pauer, A., 2014. The economic footprint of railway transport in Europe. Community of European Railway and Infrastructure Companies (CER), Brussels. es_ES
dc.description.references Martínez, I. N., Sanchis, I. V., Fernández, P. M., & Franco, R. I. (2014). Analytical model for predicting the buckling load of continuous welded rail tracks. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 229(5), 542-552. doi:10.1177/0954409713518039 es_ES
dc.description.references Nguyen, M., Wang, X., Wang, C.H., 2012. A reliability assessment of railway track buckling during an extreme heatwave. Proc Inst Mech Eng F—J Rail Rapid Transit 226 (5), pp513–517. es_ES
dc.description.references Palin, E. J., Thornton, H. E., Mathison, C. T., McCarthy, R. E., Clark, R. T., & Dora, J. (2013). Future projections of temperature-related climate change impacts on the railway network of Great Britain. Climatic Change, 120(1-2), 71-93. doi:10.1007/s10584-013-0810-8 es_ES
dc.description.references Rossetti, M.A., 2002. Potential impacts of climate change on railroads. In: The Potential Impacts of Climate Change on Transportation Workshop, USDOT Center for Climate Change and Environmental Forecasting. es_ES
dc.description.references Saadin, S.L., Kaewunruen, S., Jaroszweski, D., Dindar, S., 2016a. Operational risks of Malaysia-Singapore high speed rail infrastructure to extreme climate conditions. In: Proceedings of the the 1st Asian Conference on Railway Infrastructure and Transportation (ART 2016), Jeju, Korea. es_ES
dc.description.references Saadin, S.L., Kaewunruen, S., Jaroszweski, D., 2016b. Operational readiness for climate change of Malaysia high-speed rail', Institution of Civil Engineers. Proceedings. Transport, vol. 169, no. 5, pp. 308–320. doi: 10.1680/jtran.16.000. es_ES
dc.description.references Schulz, J., Albert, P., Behr, H.-D., Caprion, D., Deneke, H., Dewitte, S., … Zelenka, A. (2009). Operational climate monitoring from space: the EUMETSAT Satellite Application Facility on Climate Monitoring (CM-SAF). Atmospheric Chemistry and Physics, 9(5), 1687-1709. doi:10.5194/acp-9-1687-2009 es_ES
dc.description.references Simpson, V., 2012. Track Buckle Cost. QR National. es_ES
dc.description.references Thornes, J.E., Davis, B.W., 2002. Mitigating the impact of weather and climate on railway operations in the UK. In: Proceedings of the 2002 ASME/IEEE Joint Rail Conference in Washington DC, April 23–25, 2002. es_ES
dc.description.references UIC, 2005. UIC Code 720: Laying and maintenance of CWR Track. es_ES
dc.description.references Vautard, R., Gobiet, A., Jacob, D., Belda, M., Colette, A., Déqué, M., … Yiou, P. (2013). The simulation of European heat waves from an ensemble of regional climate models within the EURO-CORDEX project. Climate Dynamics, 41(9-10), 2555-2575. doi:10.1007/s00382-013-1714-z es_ES
dc.description.references Villalba Sanchis, I., Insa, R., Salvador, P., & Martínez, P. (2018). An analytical model for the prediction of thermal track buckling in dual gauge tracks. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 232(8), 2163-2172. doi:10.1177/0954409718764194 es_ES
dc.description.references Yang, G., & Bradford, M. A. (2016). Thermal-induced buckling and postbuckling analysis of continuous railway tracks. International Journal of Solids and Structures, 97-98, 637-649. doi:10.1016/j.ijsolstr.2016.04.037 es_ES
dc.description.references Yue, T., Zhao, N., Fan, Z., Li, J., Chen, C., Lu, Y., … Wilson, J. (2016). CMIP5 downscaling and its uncertainty in China. Global and Planetary Change, 146, 30-37. doi:10.1016/j.gloplacha.2016.09.003 es_ES
dc.subject.ods 09.- Desarrollar infraestructuras resilientes, promover la industrialización inclusiva y sostenible, y fomentar la innovación es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem