- -

Risk of increasing temperature due to climate change on highspeed rail network in Spain

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Risk of increasing temperature due to climate change on highspeed rail network in Spain

Mostrar el registro completo del ítem

Villalba Sanchis, I.; Insa Franco, R.; Martínez Fernández, P.; Salvador Zuriaga, P.; Font Torres, JB. (2020). Risk of increasing temperature due to climate change on highspeed rail network in Spain. Transportation Research Part D Transport and Environment. 82:1-13. https://doi.org/10.1016/j.trd.2020.102312

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/162856

Ficheros en el ítem

Metadatos del ítem

Título: Risk of increasing temperature due to climate change on highspeed rail network in Spain
Autor: Villalba Sanchis, Ignacio Insa Franco, Ricardo Martínez Fernández, Pablo Salvador Zuriaga, Pablo Font Torres, Juan B.
Entidad UPV: Universitat Politècnica de València. Departamento de Ingeniería e Infraestructura de los Transportes - Departament d'Enginyeria i Infraestructura dels Transports
Universitat Politècnica de València. Instituto del Transporte y Territorio - Institut del Transport i Territori
Fecha difusión:
Resumen:
[EN] With more than 3,200 km of track, the Spanish high-speed rail network is the longest network in Europe and the second largest in the world after China. Due to its geographical location in southern Europe, the entire ...[+]
Palabras clave: Climate change , Track buckling , Railway infrastructure , Risk assessment
Derechos de uso: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Fuente:
Transportation Research Part D Transport and Environment. (issn: 1361-9209 )
DOI: 10.1016/j.trd.2020.102312
Editorial:
Elsevier
Versión del editor: https://doi.org/10.1016/j.trd.2020.102312
Tipo: Artículo

References

Allen, D.H., Fry, G.T., 2016. Finite element formulation for thermal buckling of rails, CRR Report No. 2016-02, Texas A&M University.

Baker, C. J., Chapman, L., Quinn, A., & Dobney, K. (2009). Climate change and the railway industry: A review. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 224(3), 519-528. doi:10.1243/09544062jmes1558

Bartlett, D.L., 1960. The stability of long welded rails, Civil Eng. and Public Works Review 55(649), Parts I-IV. [+]
Allen, D.H., Fry, G.T., 2016. Finite element formulation for thermal buckling of rails, CRR Report No. 2016-02, Texas A&M University.

Baker, C. J., Chapman, L., Quinn, A., & Dobney, K. (2009). Climate change and the railway industry: A review. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 224(3), 519-528. doi:10.1243/09544062jmes1558

Bartlett, D.L., 1960. The stability of long welded rails, Civil Eng. and Public Works Review 55(649), Parts I-IV.

Brands, S., Herrera, S., Fernández, J., & Gutiérrez, J. M. (2013). How well do CMIP5 Earth System Models simulate present climate conditions in Europe and Africa? Climate Dynamics, 41(3-4), 803-817. doi:10.1007/s00382-013-1742-8

Castro, M., Martin-Vide, J., Alonso, S., 2005. The climate of Spain: past, present and scenarios for the 21st century. A Preliminary General Assessment of the Impacts in Spain Due to the Effects of Climate Change. 1–62.

Chapman, L., & Bell, S. J. (2018). High-Resolution Monitoring of Weather Impacts on Infrastructure Networks Using the Internet of Things. Bulletin of the American Meteorological Society, 99(6), 1147-1154. doi:10.1175/bams-d-17-0214.1

Chinowsky, P., Helman, J., Gulati, S., Neumann, J., Martinich, J., 2017. Impacts of climate change on operation of the US rail network, Transport Policy, 2017.

Dobney, K., Baker, C. J., Quinn, A. D., & Chapman, L. (2008). Quantifying the effects of high summer temperatures due to climate change on buckling and rail related delays in south-east United Kingdom. Meteorological Applications, 16(2), 245-251. doi:10.1002/met.114

Dobney, K., Baker, C. J., Chapman, L., & Quinn, A. D. (2009). The future cost to the United Kingdom’s railway network of heat-related delays and buckles caused by the predicted increase in high summer temperatures owing to climate change. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 224(1), 25-34. doi:10.1243/09544097jrrt292

Duinmeijer, A.G.P. & Bouwknegt, R., 2004. Betrouwbaarheid Railinfrastructuur 2003 (Reliability Rail Infrastructure 2003). Prorail, Utrecht.

Eddington, R., 2006. The Eddington transport study: the case for action. In: Harrison, P.A., Butterfield, R., Downing, T. (Eds.), 1995, Climate Change and Agriculture in Europe: Assessment of Impacts and Adaptations, Research Report No 9. Environmental Change Unit, University of Oxford.

Emdal, A.E., Priol, G., Grimstad, G., Lohren, A.H., 2007. Numerical analysis of the effect of sleepers on the lateral displacement of railway track. Numerical Models in Geomechanics.

Estaire, J., Cuéllar, V., Pardo de Santayana, F., Santana, M., 2018. Testing railway tracks at 1:1 scale at CEDEX Track Box. 360 high-speed magazine, N° 5 - June 2018, pp. 191–217.

Esveld, C., 2001. Modern railway track. Second ed. The Netherlands: MRT Productions.

Federal Railroad Administration, Office of Safety Analysis. http://safetydata.fra.dot.gov/officeofsafety/.

Ferranti, E., Chapman, L., Lowe, C., McCulloch, S., Jaroszweski, D., & Quinn, A. (2016). Heat-Related Failures on Southeast England’s Railway Network: Insights and Implications for Heat Risk Management. Weather, Climate, and Society, 8(2), 177-191. doi:10.1175/wcas-d-15-0068.1

Font Tullot, I., 2000. Climatología de España y Portugal. Universidad de Salamanca, Salamanca, p. 428.

Ford, A., Jenkins, K., Dawson, R., Pregnolato, M., Barr, S., Hall, J., 2015. Simulating impacts of extreme weather events on urban transport infrastructure in the UK. In: Dolan, T., Collins, B. (Eds.), International Symposium for Next Generation Infrastructure Conference Proceedings: 30 September–1 October 2014 International Institute of Applied Systems Analysis (IIASA), Schloss Laxenburg, Vienna, Austria. UCL STEaPP, London. pp. 233–238.

Françoise, N., Hande, D., 2012. Impacts of Climate Change on transport: a focus on road and rail transport infrastructures. EU Joint Research Centre: Institute for Prospective Technological Studies.

Hunt, G. A., 1994. An analysis of track buckling risk. Tech. Rep. RR-TM-013, British Railways, 31 pp.

IPCC, 2014. Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, [Field, C.B., V.R. Barros, D.J. Dokken, K.J. Mach, M.D. Mastrandrea, T.E. Bilir, M. Chatterjee, K.L. Ebi, Y.O. Estrada, R.C. Genova, B. Girma, E.S. Kissel, A.N. Levy, S. MacCracken, P.R. Mastrandrea, and L.L. White (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, USA, 1132 pp.

Khan, N., Shahid, S., Ahmed, K., Ismail, T., Nawaz, N., & Son, M. (2018). Performance Assessment of General Circulation Model in Simulating Daily Precipitation and Temperature Using Multiple Gridded Datasets. Water, 10(12), 1793. doi:10.3390/w10121793

Keellings, D., & Waylen, P. (2014). Investigating teleconnection drivers of bivariate heat waves in Florida using extreme value analysis. Climate Dynamics, 44(11-12), 3383-3391. doi:10.1007/s00382-014-2345-8

Koetse, M. J., & Rietveld, P. (2009). The impact of climate change and weather on transport: An overview of empirical findings. Transportation Research Part D: Transport and Environment, 14(3), 205-221. doi:10.1016/j.trd.2008.12.004

Lim, N.-H., Park, N.-H., & Kang, Y.-J. (2003). Stability of continuous welded rail track. Computers & Structures, 81(22-23), 2219-2236. doi:10.1016/s0045-7949(03)00287-6

Liu, X., Saat, M. R., & Barkan, C. P. L. (2012). Analysis of Causes of Major Train Derailment and Their Effect on Accident Rates. Transportation Research Record: Journal of the Transportation Research Board, 2289(1), 154-163. doi:10.3141/2289-20

López, E., Gutiérrez, J., & Gómez, G. (2008). Measuring Regional Cohesion Effects of Large-scale Transport Infrastructure Investments: An Accessibility Approach. European Planning Studies, 16(2), 277-301. doi:10.1080/09654310701814629

Meinshausen, M., Smith, S. J., Calvin, K., Daniel, J. S., Kainuma, M. L. T., Lamarque, J.-F., … van Vuuren, D. P. P. (2011). The RCP greenhouse gas concentrations and their extensions from 1765 to 2300. Climatic Change, 109(1-2), 213-241. doi:10.1007/s10584-011-0156-z

Mendiluce, M., & Schipper, L. (2011). Trends in passenger transport and freight energy use in Spain. Energy Policy, 39(10), 6466-6475. doi:10.1016/j.enpol.2011.07.048

Molemaker, R.J., Pauer, A., 2014. The economic footprint of railway transport in Europe. Community of European Railway and Infrastructure Companies (CER), Brussels.

Martínez, I. N., Sanchis, I. V., Fernández, P. M., & Franco, R. I. (2014). Analytical model for predicting the buckling load of continuous welded rail tracks. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 229(5), 542-552. doi:10.1177/0954409713518039

Nguyen, M., Wang, X., Wang, C.H., 2012. A reliability assessment of railway track buckling during an extreme heatwave. Proc Inst Mech Eng F—J Rail Rapid Transit 226 (5), pp513–517.

Palin, E. J., Thornton, H. E., Mathison, C. T., McCarthy, R. E., Clark, R. T., & Dora, J. (2013). Future projections of temperature-related climate change impacts on the railway network of Great Britain. Climatic Change, 120(1-2), 71-93. doi:10.1007/s10584-013-0810-8

Rossetti, M.A., 2002. Potential impacts of climate change on railroads. In: The Potential Impacts of Climate Change on Transportation Workshop, USDOT Center for Climate Change and Environmental Forecasting.

Saadin, S.L., Kaewunruen, S., Jaroszweski, D., Dindar, S., 2016a. Operational risks of Malaysia-Singapore high speed rail infrastructure to extreme climate conditions. In: Proceedings of the the 1st Asian Conference on Railway Infrastructure and Transportation (ART 2016), Jeju, Korea.

Saadin, S.L., Kaewunruen, S., Jaroszweski, D., 2016b. Operational readiness for climate change of Malaysia high-speed rail', Institution of Civil Engineers. Proceedings. Transport, vol. 169, no. 5, pp. 308–320. doi: 10.1680/jtran.16.000.

Schulz, J., Albert, P., Behr, H.-D., Caprion, D., Deneke, H., Dewitte, S., … Zelenka, A. (2009). Operational climate monitoring from space: the EUMETSAT Satellite Application Facility on Climate Monitoring (CM-SAF). Atmospheric Chemistry and Physics, 9(5), 1687-1709. doi:10.5194/acp-9-1687-2009

Simpson, V., 2012. Track Buckle Cost. QR National.

Thornes, J.E., Davis, B.W., 2002. Mitigating the impact of weather and climate on railway operations in the UK. In: Proceedings of the 2002 ASME/IEEE Joint Rail Conference in Washington DC, April 23–25, 2002.

UIC, 2005. UIC Code 720: Laying and maintenance of CWR Track.

Vautard, R., Gobiet, A., Jacob, D., Belda, M., Colette, A., Déqué, M., … Yiou, P. (2013). The simulation of European heat waves from an ensemble of regional climate models within the EURO-CORDEX project. Climate Dynamics, 41(9-10), 2555-2575. doi:10.1007/s00382-013-1714-z

Villalba Sanchis, I., Insa, R., Salvador, P., & Martínez, P. (2018). An analytical model for the prediction of thermal track buckling in dual gauge tracks. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 232(8), 2163-2172. doi:10.1177/0954409718764194

Yang, G., & Bradford, M. A. (2016). Thermal-induced buckling and postbuckling analysis of continuous railway tracks. International Journal of Solids and Structures, 97-98, 637-649. doi:10.1016/j.ijsolstr.2016.04.037

Yue, T., Zhao, N., Fan, Z., Li, J., Chen, C., Lu, Y., … Wilson, J. (2016). CMIP5 downscaling and its uncertainty in China. Global and Planetary Change, 146, 30-37. doi:10.1016/j.gloplacha.2016.09.003

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem