- -

Internally fire protected composite steel-concrete slim-floor beam

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Internally fire protected composite steel-concrete slim-floor beam

Mostrar el registro completo del ítem

Albero Gabarda, V.; Serra Mercé, E.; Espinós Capilla, A.; Romero, ML.; Hospitaler Pérez, A. (2021). Internally fire protected composite steel-concrete slim-floor beam. Engineering Structures. 227:1-11. https://doi.org/10.1016/j.engstruct.2020.111447

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/163202

Ficheros en el ítem

Metadatos del ítem

Título: Internally fire protected composite steel-concrete slim-floor beam
Autor: ALBERO GABARDA, VICENTE Serra Mercé, Enrique Espinós Capilla, Ana Romero, Manuel L. Hospitaler Pérez, Antonio
Entidad UPV: Universitat Politècnica de València. Departamento de Ingeniería de la Construcción y de Proyectos de Ingeniería Civil - Departament d'Enginyeria de la Construcció i de Projectes d'Enginyeria Civil
Universitat Politècnica de València. Departamento de Mecánica de los Medios Continuos y Teoría de Estructuras - Departament de Mecànica dels Medis Continus i Teoria d'Estructures
Universitat Politècnica de València. Instituto de Ciencia y Tecnología del Hormigón - Institut de Ciència i Tecnologia del Formigó
Fecha difusión:
Resumen:
[EN] The slim-floor beam is a composite concrete-steel beam fully integrated into the floor depth that was developed at the beginning of the 1990s. This composite beam presents a very good behaviour during the fire event ...[+]
Palabras clave: Steel-concrete composite beams , Fire resistance , Slim-floor beam , Electric furnace , Thermal experiments , Fire protection , Shallow floor beam , Integrated floor beam
Derechos de uso: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Fuente:
Engineering Structures. (issn: 0141-0296 )
DOI: 10.1016/j.engstruct.2020.111447
Editorial:
Elsevier
Versión del editor: https://doi.org/10.1016/j.engstruct.2020.111447
Código del Proyecto:
info:eu-repo/grantAgreement/MINECO//BIA2015-67492-R/ES/MEJORA DEL COMPORTAMIENTO RESISTENTE FRENTE A ALTAS TEMPERATURAS DE VIGAS MIXTAS "SLIM-FLOOR" CON MATERIALES AVANZADOS/
Agradecimientos:
The authors would like to express their sincere gratitude to the Spanish "Ministerio de Economia y Competitividad" for the help provided through the Project BIA2015-67192-R and to the European Union through the FEDER funds. ...[+]
Tipo: Artículo

References

CEN, EN 1994-1-2. Eurocode 4: Design of composite steel and concrete structures. Part 1–2: General rules – Structural fire design, Comité Européen de Normalisation, Brussels, Belgium; 2005.

CEN, EN 1992-1-2. Eurocode 2: Design of concrete structures. Part 1–2: General rules – Structural fire design, Comité Européen de Normalisation, Brussels, Belgium; 2004.

CEN, EN 1993-1-2. Eurocode 3: Design steel structures. Part 1–2: General rules – Structural fire design, Comité Européen de Normalisation, Brussels, Belgium; 2005. [+]
CEN, EN 1994-1-2. Eurocode 4: Design of composite steel and concrete structures. Part 1–2: General rules – Structural fire design, Comité Européen de Normalisation, Brussels, Belgium; 2005.

CEN, EN 1992-1-2. Eurocode 2: Design of concrete structures. Part 1–2: General rules – Structural fire design, Comité Européen de Normalisation, Brussels, Belgium; 2004.

CEN, EN 1993-1-2. Eurocode 3: Design steel structures. Part 1–2: General rules – Structural fire design, Comité Européen de Normalisation, Brussels, Belgium; 2005.

Han, L.-H., Zhao, X.-L., Yang, Y.-F., & Feng, J.-B. (2003). Experimental Study and Calculation of Fire Resistance of Concrete-Filled Hollow Steel Columns. Journal of Structural Engineering, 129(3), 346-356. doi:10.1061/(asce)0733-9445(2003)129:3(346)

Romero ML, Espinós A, Renaud C, Bihina G, Schaumann P, Kleiboemer P et al. Fire resistance of innovative and slender concrete filled tubular composite columns (FRISCC). Final report, Catalogue number KI-NA-28082-EN-N. RFCS Publications. Brussels; 2016.

Romero, M. L., Espinós, A., Lapuebla-Ferri, A., Albero, V., & Hospitaler, A. (2020). Recent developments and fire design provisions for CFST columns and slim-floor beams. Journal of Constructional Steel Research, 172, 106159. doi:10.1016/j.jcsr.2020.106159

Albero, V., Espinós, A., Serra, E., Romero, M. L., & Hospitaler, A. (2019). Numerical study on the flexural behaviour of slim-floor beams with hollow core slabs at elevated temperature. Engineering Structures, 180, 561-573. doi:10.1016/j.engstruct.2018.11.061

Romero, M. L., Albero, V., Espinós, A., & Hospitaler, A. (2019). Fire design of slim‐floor beams. Stahlbau, 88(7), 665-674. doi:10.1002/stab.201900030

Romero, M. L., Cajot, L.-G., Conan, Y., & Braun, M. (2015). Fire design methods for slim-floor structures. Steel Construction, 8(2), 102-109. doi:10.1002/stco.201510012

Newman, G. M. (1995). Fire resistance of slim floor beams. Journal of Constructional Steel Research, 33(1-2), 87-100. doi:10.1016/0143-974x(94)00016-b

Kim, H. J., Kim, H. Y., & Park, S. Y. (2011). An Experimental Study on Fire Resistance of Slim Floor Beam. Applied Mechanics and Materials, 82, 752-757. doi:10.4028/www.scientific.net/amm.82.752

Ma, Z., & Mäkeläinen, P. (2006). Structural behaviour of composite slim floor frames in fire conditions. Journal of Constructional Steel Research, 62(12), 1282-1289. doi:10.1016/j.jcsr.2006.04.026

Zaharia, R., & Franssen, J. M. (2012). Simple equations for the calculation of the temperature within the cross-section of slim floor beams under ISO Fire. Steel & Composite structures, 13(2), 171-185. doi:10.12989/scs.2012.13.2.171

Albero, V., Serra, E., Espinós, A., Romero, M. L., & Hospitaler, A. (2020). Innovative solutions for enhancing the fire resistance of slim-floor beams: Thermal experiments. Journal of Constructional Steel Research, 165, 105897. doi:10.1016/j.jcsr.2019.105897

Mäkeläinen, P., & Ma, Z. (2000). Fire resistance of composite slim floor beams. Journal of Constructional Steel Research, 54(3), 345-363. doi:10.1016/s0143-974x(99)00059-0

Shahabi, S. E. M., Ramli Sulong, N. H., Shariati, M., Mohammadhassani, M., & Shah, S. N. R. (2016). Numerical analysis of channel connectors under fire and a comparison of performance with different types of shear connectors subjected to fire. Steel and Composite Structures, 20(3), 651-669. doi:10.12989/scs.2016.20.3.651

Li GQ, Xu Q, Wang L, Han J, Main issues on behaviour of intumescent coatings. Keynote Lecture, Applications of Structural Fire Engineering conference. ASFE 2019. Singapore.

Gardner, L., Insausti, A., Ng, K. T., & Ashraf, M. (2010). Elevated temperature material properties of stainless steel alloys. Journal of Constructional Steel Research, 66(5), 634-647. doi:10.1016/j.jcsr.2009.12.016

Chen, J., & Young, B. (2006). Stress–strain curves for stainless steel at elevated temperatures. Engineering Structures, 28(2), 229-239. doi:10.1016/j.engstruct.2005.07.005

ABAQUS, Abaqus/standard version 6.14 user's manual: volumes I–III, Pawtucket, Rhode Island: Hibbit, Karlsson & Sorensen, Inc; 2014.

CEN, EN 1991-1-2. Eurocode 1: Actions on structures. Part 1–2. General actions – actions on structures exposed to fire, Comité Européen de Normalisation, Brussels, Belgium; 2002.

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem