CEN, EN 1994-1-2. Eurocode 4: Design of composite steel and concrete structures. Part 1–2: General rules – Structural fire design, Comité Européen de Normalisation, Brussels, Belgium; 2005.
CEN, EN 1992-1-2. Eurocode 2: Design of concrete structures. Part 1–2: General rules – Structural fire design, Comité Européen de Normalisation, Brussels, Belgium; 2004.
CEN, EN 1993-1-2. Eurocode 3: Design steel structures. Part 1–2: General rules – Structural fire design, Comité Européen de Normalisation, Brussels, Belgium; 2005.
[+]
CEN, EN 1994-1-2. Eurocode 4: Design of composite steel and concrete structures. Part 1–2: General rules – Structural fire design, Comité Européen de Normalisation, Brussels, Belgium; 2005.
CEN, EN 1992-1-2. Eurocode 2: Design of concrete structures. Part 1–2: General rules – Structural fire design, Comité Européen de Normalisation, Brussels, Belgium; 2004.
CEN, EN 1993-1-2. Eurocode 3: Design steel structures. Part 1–2: General rules – Structural fire design, Comité Européen de Normalisation, Brussels, Belgium; 2005.
Han, L.-H., Zhao, X.-L., Yang, Y.-F., & Feng, J.-B. (2003). Experimental Study and Calculation of Fire Resistance of Concrete-Filled Hollow Steel Columns. Journal of Structural Engineering, 129(3), 346-356. doi:10.1061/(asce)0733-9445(2003)129:3(346)
Romero ML, Espinós A, Renaud C, Bihina G, Schaumann P, Kleiboemer P et al. Fire resistance of innovative and slender concrete filled tubular composite columns (FRISCC). Final report, Catalogue number KI-NA-28082-EN-N. RFCS Publications. Brussels; 2016.
Romero, M. L., Espinós, A., Lapuebla-Ferri, A., Albero, V., & Hospitaler, A. (2020). Recent developments and fire design provisions for CFST columns and slim-floor beams. Journal of Constructional Steel Research, 172, 106159. doi:10.1016/j.jcsr.2020.106159
Albero, V., Espinós, A., Serra, E., Romero, M. L., & Hospitaler, A. (2019). Numerical study on the flexural behaviour of slim-floor beams with hollow core slabs at elevated temperature. Engineering Structures, 180, 561-573. doi:10.1016/j.engstruct.2018.11.061
Romero, M. L., Albero, V., Espinós, A., & Hospitaler, A. (2019). Fire design of slim‐floor beams. Stahlbau, 88(7), 665-674. doi:10.1002/stab.201900030
Romero, M. L., Cajot, L.-G., Conan, Y., & Braun, M. (2015). Fire design methods for slim-floor structures. Steel Construction, 8(2), 102-109. doi:10.1002/stco.201510012
Newman, G. M. (1995). Fire resistance of slim floor beams. Journal of Constructional Steel Research, 33(1-2), 87-100. doi:10.1016/0143-974x(94)00016-b
Kim, H. J., Kim, H. Y., & Park, S. Y. (2011). An Experimental Study on Fire Resistance of Slim Floor Beam. Applied Mechanics and Materials, 82, 752-757. doi:10.4028/www.scientific.net/amm.82.752
Ma, Z., & Mäkeläinen, P. (2006). Structural behaviour of composite slim floor frames in fire conditions. Journal of Constructional Steel Research, 62(12), 1282-1289. doi:10.1016/j.jcsr.2006.04.026
Zaharia, R., & Franssen, J. M. (2012). Simple equations for the calculation of the temperature within the cross-section of slim floor beams under ISO Fire. Steel & Composite structures, 13(2), 171-185. doi:10.12989/scs.2012.13.2.171
Albero, V., Serra, E., Espinós, A., Romero, M. L., & Hospitaler, A. (2020). Innovative solutions for enhancing the fire resistance of slim-floor beams: Thermal experiments. Journal of Constructional Steel Research, 165, 105897. doi:10.1016/j.jcsr.2019.105897
Mäkeläinen, P., & Ma, Z. (2000). Fire resistance of composite slim floor beams. Journal of Constructional Steel Research, 54(3), 345-363. doi:10.1016/s0143-974x(99)00059-0
Shahabi, S. E. M., Ramli Sulong, N. H., Shariati, M., Mohammadhassani, M., & Shah, S. N. R. (2016). Numerical analysis of channel connectors under fire and a comparison of performance with different types of shear connectors subjected to fire. Steel and Composite Structures, 20(3), 651-669. doi:10.12989/scs.2016.20.3.651
Li GQ, Xu Q, Wang L, Han J, Main issues on behaviour of intumescent coatings. Keynote Lecture, Applications of Structural Fire Engineering conference. ASFE 2019. Singapore.
Gardner, L., Insausti, A., Ng, K. T., & Ashraf, M. (2010). Elevated temperature material properties of stainless steel alloys. Journal of Constructional Steel Research, 66(5), 634-647. doi:10.1016/j.jcsr.2009.12.016
Chen, J., & Young, B. (2006). Stress–strain curves for stainless steel at elevated temperatures. Engineering Structures, 28(2), 229-239. doi:10.1016/j.engstruct.2005.07.005
ABAQUS, Abaqus/standard version 6.14 user's manual: volumes I–III, Pawtucket, Rhode Island: Hibbit, Karlsson & Sorensen, Inc; 2014.
CEN, EN 1991-1-2. Eurocode 1: Actions on structures. Part 1–2. General actions – actions on structures exposed to fire, Comité Européen de Normalisation, Brussels, Belgium; 2002.
[-]