Mostrar el registro sencillo del ítem
dc.contributor.author | ALBERO GABARDA, VICENTE | es_ES |
dc.contributor.author | Serra Mercé, Enrique | es_ES |
dc.contributor.author | Espinós Capilla, Ana | es_ES |
dc.contributor.author | Romero, Manuel L. | es_ES |
dc.contributor.author | Hospitaler Pérez, Antonio | es_ES |
dc.date.accessioned | 2021-03-05T04:33:10Z | |
dc.date.available | 2021-03-05T04:33:10Z | |
dc.date.issued | 2021-01-15 | es_ES |
dc.identifier.issn | 0141-0296 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/163202 | |
dc.description.abstract | [EN] The slim-floor beam is a composite concrete-steel beam fully integrated into the floor depth that was developed at the beginning of the 1990s. This composite beam presents a very good behaviour during the fire event because most of the steel parts of the section remain protected by the concrete encasement. Indeed, in a fire event, only the bottom surface of the lower steel plate results exposed to the heat source. The use of intumescent coating or other fireproof materials is the most common way to insulate the steel beam from fire but requires an accurate application and also appropriate maintenance during its whole life cycle to ensure proper fire protection. Thus, related to this last idea, the objective of this work is to present a new slim-floor configuration which increases the insulation of the beam from fire by using a design strategy that avoids the needed for maintenance. This new beam configuration has been called "Internally Fire Protected Slim-Floor Beam" (IFP-SFB) and implies a thermal break included within the beam cross-section. This paper presents the results of a series of thermal tests applied to this innovative slim-floor type proposed by the authors and its comparison against the most commonly used slim-floor configurations. Finally, the benefits of the proposed IFP-SFB configuration are presented, resulting in up to 30-60 min of additional fire resistance time. The IFP-SFB configuration is at present right-protected and under evaluation by the Spanish Office of Patents and Trademarks with reference number P201930438. | es_ES |
dc.description.sponsorship | The authors would like to express their sincere gratitude to the Spanish "Ministerio de Economia y Competitividad" for the help provided through the Project BIA2015-67192-R and to the European Union through the FEDER funds. The here presented "Internally Fire Protected Slim-Floor Beam" (IFPSFB) configuration is currently right-protected and under evaluation by the Spanish Office of Patents and Trademarks with the reference number P201930438 and with publication number ES2732719 A1. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Elsevier | es_ES |
dc.relation.ispartof | Engineering Structures | es_ES |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | Steel-concrete composite beams | es_ES |
dc.subject | Fire resistance | es_ES |
dc.subject | Slim-floor beam | es_ES |
dc.subject | Electric furnace | es_ES |
dc.subject | Thermal experiments | es_ES |
dc.subject | Fire protection | es_ES |
dc.subject | Shallow floor beam | es_ES |
dc.subject | Integrated floor beam | es_ES |
dc.subject.classification | INGENIERIA AEROESPACIAL | es_ES |
dc.subject.classification | INGENIERIA DE LA CONSTRUCCION | es_ES |
dc.subject.classification | MECANICA DE LOS MEDIOS CONTINUOS Y TEORIA DE ESTRUCTURAS | es_ES |
dc.title | Internally fire protected composite steel-concrete slim-floor beam | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1016/j.engstruct.2020.111447 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//BIA2015-67492-R/ES/MEJORA DEL COMPORTAMIENTO RESISTENTE FRENTE A ALTAS TEMPERATURAS DE VIGAS MIXTAS "SLIM-FLOOR" CON MATERIALES AVANZADOS/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería de la Construcción y de Proyectos de Ingeniería Civil - Departament d'Enginyeria de la Construcció i de Projectes d'Enginyeria Civil | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Mecánica de los Medios Continuos y Teoría de Estructuras - Departament de Mecànica dels Medis Continus i Teoria d'Estructures | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto de Ciencia y Tecnología del Hormigón - Institut de Ciència i Tecnologia del Formigó | es_ES |
dc.description.bibliographicCitation | Albero Gabarda, V.; Serra Mercé, E.; Espinós Capilla, A.; Romero, ML.; Hospitaler Pérez, A. (2021). Internally fire protected composite steel-concrete slim-floor beam. Engineering Structures. 227:1-11. https://doi.org/10.1016/j.engstruct.2020.111447 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1016/j.engstruct.2020.111447 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 11 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 227 | es_ES |
dc.relation.pasarela | S\420135 | es_ES |
dc.contributor.funder | Ministerio de Economía y Empresa | es_ES |
dc.contributor.funder | European Regional Development Fund | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.description.references | CEN, EN 1994-1-2. Eurocode 4: Design of composite steel and concrete structures. Part 1–2: General rules – Structural fire design, Comité Européen de Normalisation, Brussels, Belgium; 2005. | es_ES |
dc.description.references | CEN, EN 1992-1-2. Eurocode 2: Design of concrete structures. Part 1–2: General rules – Structural fire design, Comité Européen de Normalisation, Brussels, Belgium; 2004. | es_ES |
dc.description.references | CEN, EN 1993-1-2. Eurocode 3: Design steel structures. Part 1–2: General rules – Structural fire design, Comité Européen de Normalisation, Brussels, Belgium; 2005. | es_ES |
dc.description.references | Han, L.-H., Zhao, X.-L., Yang, Y.-F., & Feng, J.-B. (2003). Experimental Study and Calculation of Fire Resistance of Concrete-Filled Hollow Steel Columns. Journal of Structural Engineering, 129(3), 346-356. doi:10.1061/(asce)0733-9445(2003)129:3(346) | es_ES |
dc.description.references | Romero ML, Espinós A, Renaud C, Bihina G, Schaumann P, Kleiboemer P et al. Fire resistance of innovative and slender concrete filled tubular composite columns (FRISCC). Final report, Catalogue number KI-NA-28082-EN-N. RFCS Publications. Brussels; 2016. | es_ES |
dc.description.references | Romero, M. L., Espinós, A., Lapuebla-Ferri, A., Albero, V., & Hospitaler, A. (2020). Recent developments and fire design provisions for CFST columns and slim-floor beams. Journal of Constructional Steel Research, 172, 106159. doi:10.1016/j.jcsr.2020.106159 | es_ES |
dc.description.references | Albero, V., Espinós, A., Serra, E., Romero, M. L., & Hospitaler, A. (2019). Numerical study on the flexural behaviour of slim-floor beams with hollow core slabs at elevated temperature. Engineering Structures, 180, 561-573. doi:10.1016/j.engstruct.2018.11.061 | es_ES |
dc.description.references | Romero, M. L., Albero, V., Espinós, A., & Hospitaler, A. (2019). Fire design of slim‐floor beams. Stahlbau, 88(7), 665-674. doi:10.1002/stab.201900030 | es_ES |
dc.description.references | Romero, M. L., Cajot, L.-G., Conan, Y., & Braun, M. (2015). Fire design methods for slim-floor structures. Steel Construction, 8(2), 102-109. doi:10.1002/stco.201510012 | es_ES |
dc.description.references | Newman, G. M. (1995). Fire resistance of slim floor beams. Journal of Constructional Steel Research, 33(1-2), 87-100. doi:10.1016/0143-974x(94)00016-b | es_ES |
dc.description.references | Kim, H. J., Kim, H. Y., & Park, S. Y. (2011). An Experimental Study on Fire Resistance of Slim Floor Beam. Applied Mechanics and Materials, 82, 752-757. doi:10.4028/www.scientific.net/amm.82.752 | es_ES |
dc.description.references | Ma, Z., & Mäkeläinen, P. (2006). Structural behaviour of composite slim floor frames in fire conditions. Journal of Constructional Steel Research, 62(12), 1282-1289. doi:10.1016/j.jcsr.2006.04.026 | es_ES |
dc.description.references | Zaharia, R., & Franssen, J. M. (2012). Simple equations for the calculation of the temperature within the cross-section of slim floor beams under ISO Fire. Steel & Composite structures, 13(2), 171-185. doi:10.12989/scs.2012.13.2.171 | es_ES |
dc.description.references | Albero, V., Serra, E., Espinós, A., Romero, M. L., & Hospitaler, A. (2020). Innovative solutions for enhancing the fire resistance of slim-floor beams: Thermal experiments. Journal of Constructional Steel Research, 165, 105897. doi:10.1016/j.jcsr.2019.105897 | es_ES |
dc.description.references | Mäkeläinen, P., & Ma, Z. (2000). Fire resistance of composite slim floor beams. Journal of Constructional Steel Research, 54(3), 345-363. doi:10.1016/s0143-974x(99)00059-0 | es_ES |
dc.description.references | Shahabi, S. E. M., Ramli Sulong, N. H., Shariati, M., Mohammadhassani, M., & Shah, S. N. R. (2016). Numerical analysis of channel connectors under fire and a comparison of performance with different types of shear connectors subjected to fire. Steel and Composite Structures, 20(3), 651-669. doi:10.12989/scs.2016.20.3.651 | es_ES |
dc.description.references | Li GQ, Xu Q, Wang L, Han J, Main issues on behaviour of intumescent coatings. Keynote Lecture, Applications of Structural Fire Engineering conference. ASFE 2019. Singapore. | es_ES |
dc.description.references | Gardner, L., Insausti, A., Ng, K. T., & Ashraf, M. (2010). Elevated temperature material properties of stainless steel alloys. Journal of Constructional Steel Research, 66(5), 634-647. doi:10.1016/j.jcsr.2009.12.016 | es_ES |
dc.description.references | Chen, J., & Young, B. (2006). Stress–strain curves for stainless steel at elevated temperatures. Engineering Structures, 28(2), 229-239. doi:10.1016/j.engstruct.2005.07.005 | es_ES |
dc.description.references | ABAQUS, Abaqus/standard version 6.14 user's manual: volumes I–III, Pawtucket, Rhode Island: Hibbit, Karlsson & Sorensen, Inc; 2014. | es_ES |
dc.description.references | CEN, EN 1991-1-2. Eurocode 1: Actions on structures. Part 1–2. General actions – actions on structures exposed to fire, Comité Européen de Normalisation, Brussels, Belgium; 2002. | es_ES |