- -

Internally fire protected composite steel-concrete slim-floor beam

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Internally fire protected composite steel-concrete slim-floor beam

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author ALBERO GABARDA, VICENTE es_ES
dc.contributor.author Serra Mercé, Enrique es_ES
dc.contributor.author Espinós Capilla, Ana es_ES
dc.contributor.author Romero, Manuel L. es_ES
dc.contributor.author Hospitaler Pérez, Antonio es_ES
dc.date.accessioned 2021-03-05T04:33:10Z
dc.date.available 2021-03-05T04:33:10Z
dc.date.issued 2021-01-15 es_ES
dc.identifier.issn 0141-0296 es_ES
dc.identifier.uri http://hdl.handle.net/10251/163202
dc.description.abstract [EN] The slim-floor beam is a composite concrete-steel beam fully integrated into the floor depth that was developed at the beginning of the 1990s. This composite beam presents a very good behaviour during the fire event because most of the steel parts of the section remain protected by the concrete encasement. Indeed, in a fire event, only the bottom surface of the lower steel plate results exposed to the heat source. The use of intumescent coating or other fireproof materials is the most common way to insulate the steel beam from fire but requires an accurate application and also appropriate maintenance during its whole life cycle to ensure proper fire protection. Thus, related to this last idea, the objective of this work is to present a new slim-floor configuration which increases the insulation of the beam from fire by using a design strategy that avoids the needed for maintenance. This new beam configuration has been called "Internally Fire Protected Slim-Floor Beam" (IFP-SFB) and implies a thermal break included within the beam cross-section. This paper presents the results of a series of thermal tests applied to this innovative slim-floor type proposed by the authors and its comparison against the most commonly used slim-floor configurations. Finally, the benefits of the proposed IFP-SFB configuration are presented, resulting in up to 30-60 min of additional fire resistance time. The IFP-SFB configuration is at present right-protected and under evaluation by the Spanish Office of Patents and Trademarks with reference number P201930438. es_ES
dc.description.sponsorship The authors would like to express their sincere gratitude to the Spanish "Ministerio de Economia y Competitividad" for the help provided through the Project BIA2015-67192-R and to the European Union through the FEDER funds. The here presented "Internally Fire Protected Slim-Floor Beam" (IFPSFB) configuration is currently right-protected and under evaluation by the Spanish Office of Patents and Trademarks with the reference number P201930438 and with publication number ES2732719 A1. es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Engineering Structures es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Steel-concrete composite beams es_ES
dc.subject Fire resistance es_ES
dc.subject Slim-floor beam es_ES
dc.subject Electric furnace es_ES
dc.subject Thermal experiments es_ES
dc.subject Fire protection es_ES
dc.subject Shallow floor beam es_ES
dc.subject Integrated floor beam es_ES
dc.subject.classification INGENIERIA AEROESPACIAL es_ES
dc.subject.classification INGENIERIA DE LA CONSTRUCCION es_ES
dc.subject.classification MECANICA DE LOS MEDIOS CONTINUOS Y TEORIA DE ESTRUCTURAS es_ES
dc.title Internally fire protected composite steel-concrete slim-floor beam es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.engstruct.2020.111447 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//BIA2015-67492-R/ES/MEJORA DEL COMPORTAMIENTO RESISTENTE FRENTE A ALTAS TEMPERATURAS DE VIGAS MIXTAS "SLIM-FLOOR" CON MATERIALES AVANZADOS/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería de la Construcción y de Proyectos de Ingeniería Civil - Departament d'Enginyeria de la Construcció i de Projectes d'Enginyeria Civil es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Mecánica de los Medios Continuos y Teoría de Estructuras - Departament de Mecànica dels Medis Continus i Teoria d'Estructures es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto de Ciencia y Tecnología del Hormigón - Institut de Ciència i Tecnologia del Formigó es_ES
dc.description.bibliographicCitation Albero Gabarda, V.; Serra Mercé, E.; Espinós Capilla, A.; Romero, ML.; Hospitaler Pérez, A. (2021). Internally fire protected composite steel-concrete slim-floor beam. Engineering Structures. 227:1-11. https://doi.org/10.1016/j.engstruct.2020.111447 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.engstruct.2020.111447 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 11 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 227 es_ES
dc.relation.pasarela S\420135 es_ES
dc.contributor.funder Ministerio de Economía y Empresa es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references CEN, EN 1994-1-2. Eurocode 4: Design of composite steel and concrete structures. Part 1–2: General rules – Structural fire design, Comité Européen de Normalisation, Brussels, Belgium; 2005. es_ES
dc.description.references CEN, EN 1992-1-2. Eurocode 2: Design of concrete structures. Part 1–2: General rules – Structural fire design, Comité Européen de Normalisation, Brussels, Belgium; 2004. es_ES
dc.description.references CEN, EN 1993-1-2. Eurocode 3: Design steel structures. Part 1–2: General rules – Structural fire design, Comité Européen de Normalisation, Brussels, Belgium; 2005. es_ES
dc.description.references Han, L.-H., Zhao, X.-L., Yang, Y.-F., & Feng, J.-B. (2003). Experimental Study and Calculation of Fire Resistance of Concrete-Filled Hollow Steel Columns. Journal of Structural Engineering, 129(3), 346-356. doi:10.1061/(asce)0733-9445(2003)129:3(346) es_ES
dc.description.references Romero ML, Espinós A, Renaud C, Bihina G, Schaumann P, Kleiboemer P et al. Fire resistance of innovative and slender concrete filled tubular composite columns (FRISCC). Final report, Catalogue number KI-NA-28082-EN-N. RFCS Publications. Brussels; 2016. es_ES
dc.description.references Romero, M. L., Espinós, A., Lapuebla-Ferri, A., Albero, V., & Hospitaler, A. (2020). Recent developments and fire design provisions for CFST columns and slim-floor beams. Journal of Constructional Steel Research, 172, 106159. doi:10.1016/j.jcsr.2020.106159 es_ES
dc.description.references Albero, V., Espinós, A., Serra, E., Romero, M. L., & Hospitaler, A. (2019). Numerical study on the flexural behaviour of slim-floor beams with hollow core slabs at elevated temperature. Engineering Structures, 180, 561-573. doi:10.1016/j.engstruct.2018.11.061 es_ES
dc.description.references Romero, M. L., Albero, V., Espinós, A., & Hospitaler, A. (2019). Fire design of slim‐floor beams. Stahlbau, 88(7), 665-674. doi:10.1002/stab.201900030 es_ES
dc.description.references Romero, M. L., Cajot, L.-G., Conan, Y., & Braun, M. (2015). Fire design methods for slim-floor structures. Steel Construction, 8(2), 102-109. doi:10.1002/stco.201510012 es_ES
dc.description.references Newman, G. M. (1995). Fire resistance of slim floor beams. Journal of Constructional Steel Research, 33(1-2), 87-100. doi:10.1016/0143-974x(94)00016-b es_ES
dc.description.references Kim, H. J., Kim, H. Y., & Park, S. Y. (2011). An Experimental Study on Fire Resistance of Slim Floor Beam. Applied Mechanics and Materials, 82, 752-757. doi:10.4028/www.scientific.net/amm.82.752 es_ES
dc.description.references Ma, Z., & Mäkeläinen, P. (2006). Structural behaviour of composite slim floor frames in fire conditions. Journal of Constructional Steel Research, 62(12), 1282-1289. doi:10.1016/j.jcsr.2006.04.026 es_ES
dc.description.references Zaharia, R., & Franssen, J. M. (2012). Simple equations for the calculation of the temperature within the cross-section of slim floor beams under ISO Fire. Steel & Composite structures, 13(2), 171-185. doi:10.12989/scs.2012.13.2.171 es_ES
dc.description.references Albero, V., Serra, E., Espinós, A., Romero, M. L., & Hospitaler, A. (2020). Innovative solutions for enhancing the fire resistance of slim-floor beams: Thermal experiments. Journal of Constructional Steel Research, 165, 105897. doi:10.1016/j.jcsr.2019.105897 es_ES
dc.description.references Mäkeläinen, P., & Ma, Z. (2000). Fire resistance of composite slim floor beams. Journal of Constructional Steel Research, 54(3), 345-363. doi:10.1016/s0143-974x(99)00059-0 es_ES
dc.description.references Shahabi, S. E. M., Ramli Sulong, N. H., Shariati, M., Mohammadhassani, M., & Shah, S. N. R. (2016). Numerical analysis of channel connectors under fire and a comparison of performance with different types of shear connectors subjected to fire. Steel and Composite Structures, 20(3), 651-669. doi:10.12989/scs.2016.20.3.651 es_ES
dc.description.references Li GQ, Xu Q, Wang L, Han J, Main issues on behaviour of intumescent coatings. Keynote Lecture, Applications of Structural Fire Engineering conference. ASFE 2019. Singapore. es_ES
dc.description.references Gardner, L., Insausti, A., Ng, K. T., & Ashraf, M. (2010). Elevated temperature material properties of stainless steel alloys. Journal of Constructional Steel Research, 66(5), 634-647. doi:10.1016/j.jcsr.2009.12.016 es_ES
dc.description.references Chen, J., & Young, B. (2006). Stress–strain curves for stainless steel at elevated temperatures. Engineering Structures, 28(2), 229-239. doi:10.1016/j.engstruct.2005.07.005 es_ES
dc.description.references ABAQUS, Abaqus/standard version 6.14 user's manual: volumes I–III, Pawtucket, Rhode Island: Hibbit, Karlsson & Sorensen, Inc; 2014. es_ES
dc.description.references CEN, EN 1991-1-2. Eurocode 1: Actions on structures. Part 1–2. General actions – actions on structures exposed to fire, Comité Européen de Normalisation, Brussels, Belgium; 2002. es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem