- -

Classification of the Microstructural Elements of the Vegetal Tissue of the Pumpkin (Cucurbita pepo L.) Using Convolutional Neural Networks

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Classification of the Microstructural Elements of the Vegetal Tissue of the Pumpkin (Cucurbita pepo L.) Using Convolutional Neural Networks

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Oblitas, Jimy es_ES
dc.contributor.author Mejía, Jezreel es_ES
dc.contributor.author De-La-Torre, Miguel es_ES
dc.contributor.author Avila-George, Himer es_ES
dc.contributor.author Seguí Gil, Lucía es_ES
dc.contributor.author Mayor López, Luis es_ES
dc.contributor.author Ibarz, Albert es_ES
dc.contributor.author Castro, Wilson es_ES
dc.date.accessioned 2021-03-10T04:31:16Z
dc.date.available 2021-03-10T04:31:16Z
dc.date.issued 2021-02 es_ES
dc.identifier.uri http://hdl.handle.net/10251/163576
dc.description.abstract [EN] Although knowledge of the microstructure of food of vegetal origin helps us to understand the behavior of food materials, the variability in the microstructural elements complicates this analysis. In this regard, the construction of learning models that represent the actual microstructures of the tissue is important to extract relevant information and advance in the comprehension of such behavior. Consequently, the objective of this research is to compare two machine learning techniques¿Convolutional Neural Networks (CNN) and Radial Basis Neural Networks (RBNN)¿when used to enhance its microstructural analysis. Two main contributions can be highlighted from this research. First, a method is proposed to automatically analyze the microstructural elements of vegetal tissue; and second, a comparison was conducted to select a classifier to discriminate between tissue structures. For the comparison, a database of microstructural elements images was obtained from pumpkin (Cucurbita pepo L.) micrographs. Two classifiers were implemented using CNN and RBNN, and statistical performance metrics were computed using a 5-fold cross-validation scheme. This process was repeated one hundred times with a random selection of images in each repetition. The comparison showed that the classifiers based on CNN produced a better fit, obtaining F1¿score average of 89.42% in front of 83.83% for RBNN. In this study, the performance of classifiers based on CNN was significantly higher compared to those based on RBNN in the discrimination of microstructural elements of vegetable foods. es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Applied Sciences es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Cucurbita pepo L. es_ES
dc.subject Image processing es_ES
dc.subject Micrograph es_ES
dc.subject Plant tissue es_ES
dc.subject CNN es_ES
dc.subject RBNN es_ES
dc.subject.classification TECNOLOGIA DE ALIMENTOS es_ES
dc.subject.classification INGENIERIA QUIMICA es_ES
dc.title Classification of the Microstructural Elements of the Vegetal Tissue of the Pumpkin (Cucurbita pepo L.) Using Convolutional Neural Networks es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/app11041581 es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Tecnología de Alimentos - Departament de Tecnologia d'Aliments es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Química y Nuclear - Departament d'Enginyeria Química i Nuclear es_ES
dc.description.bibliographicCitation Oblitas, J.; Mejía, J.; De-La-Torre, M.; Avila-George, H.; Seguí Gil, L.; Mayor López, L.; Ibarz, A.... (2021). Classification of the Microstructural Elements of the Vegetal Tissue of the Pumpkin (Cucurbita pepo L.) Using Convolutional Neural Networks. Applied Sciences. 11(4):1-13. https://doi.org/10.3390/app11041581 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/app11041581 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 13 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 11 es_ES
dc.description.issue 4 es_ES
dc.identifier.eissn 2076-3417 es_ES
dc.relation.pasarela S\429076 es_ES
dc.description.references Betoret, E., Betoret, N., Rocculi, P., & Dalla Rosa, M. (2015). Strategies to improve food functionality: Structure–property relationships on high pressures homogenization, vacuum impregnation and drying technologies. Trends in Food Science & Technology, 46(1), 1-12. doi:10.1016/j.tifs.2015.07.006 es_ES
dc.description.references Fito, P., LeMaguer, M., Betoret, N., & Fito, P. J. (2007). Advanced food process engineering to model real foods and processes: The «SAFES» methodology. Journal of Food Engineering, 83(2), 173-185. doi:10.1016/j.jfoodeng.2007.02.017 es_ES
dc.description.references Topete-Betancourt, A., De D. Figueroa-Cárdenas, J., Morales-Sánchez, E., Arámbula-Villa, G., & Pérez-Robles, J. F. (2019). EVALUATION OF THE MECHANISM OF OIL UPTAKE AND WATER LOSS DURING DEEP-FAT FRYING OF TORTILLA CHIPS. Revista Mexicana de Ingeniería Química, 19(1), 409-422. doi:10.24275/rmiq/alim605 es_ES
dc.description.references Silva-Jara, J. M., López-Cruz, R., Ragazzo-Sánchez, J. A., & Calderón-Santoyo, M. (2019). Antagonistic microorganisms efficiency to suppress damage caused by Colletotrichum gloeosporioides in papaya crop: Perspectives and challenges. Revista Mexicana de Ingeniería Química, 19(2), 839-849. doi:10.24275/rmiq/bio788 es_ES
dc.description.references Aguilera, J. M. (2005). Why food microstructure? Journal of Food Engineering, 67(1-2), 3-11. doi:10.1016/j.jfoodeng.2004.05.050 es_ES
dc.description.references Pieczywek, P. M., & Zdunek, A. (2012). Automatic classification of cells and intercellular spaces of apple tissue. Computers and Electronics in Agriculture, 81, 72-78. doi:10.1016/j.compag.2011.11.006 es_ES
dc.description.references Mayor, L., Pissarra, J., & Sereno, A. M. (2008). Microstructural changes during osmotic dehydration of parenchymatic pumpkin tissue. Journal of Food Engineering, 85(3), 326-339. doi:10.1016/j.jfoodeng.2007.06.038 es_ES
dc.description.references Mebatsion, H. K., Verboven, P., Verlinden, B. E., Ho, Q. T., Nguyen, T. A., & Nicolaï, B. M. (2006). Microscale modelling of fruit tissue using Voronoi tessellations. Computers and Electronics in Agriculture, 52(1-2), 36-48. doi:10.1016/j.compag.2006.01.002 es_ES
dc.description.references Oblitas-Cruz, J. F., Castro-Silupu, W. M., & Mayor-López, L. (2015). Effect of different combinations of size and shape parameters in the percentage error of classification of structural elements in vegetal tissue of the pumpkin Cucurbita pepo L. using probabilistic neural networks. Revista Facultad de Ingeniería Universidad de Antioquia, (78). doi:10.17533/udea.redin.n78a04 es_ES
dc.description.references Meng, N., Lam, E. Y., Tsia, K. K., & So, H. K.-H. (2019). Large-Scale Multi-Class Image-Based Cell Classification With Deep Learning. IEEE Journal of Biomedical and Health Informatics, 23(5), 2091-2098. doi:10.1109/jbhi.2018.2878878 es_ES
dc.description.references Adeshina, S. A., Adedigba, A. P., Adeniyi, A. A., & Aibinu, A. M. (2018). Breast Cancer Histopathology Image Classification with Deep Convolutional Neural Networks. 2018 14th International Conference on Electronics Computer and Computation (ICECCO). doi:10.1109/icecco.2018.8634690 es_ES
dc.description.references Aliyu, H. A., Sudirman, R., Abdul Razak, M. A., & Abd Wahab, M. A. (2018). Red Blood Cell Classification: Deep Learning Architecture Versus Support Vector Machine. 2018 2nd International Conference on BioSignal Analysis, Processing and Systems (ICBAPS). doi:10.1109/icbaps.2018.8527398 es_ES
dc.description.references Reddy, A. S. B., & Juliet, D. S. (2019). Transfer Learning with ResNet-50 for Malaria Cell-Image Classification. 2019 International Conference on Communication and Signal Processing (ICCSP). doi:10.1109/iccsp.2019.8697909 es_ES
dc.description.references Mayor, L., Moreira, R., & Sereno, A. M. (2011). Shrinkage, density, porosity and shape changes during dehydration of pumpkin (Cucurbita pepo L.) fruits. Journal of Food Engineering, 103(1), 29-37. doi:10.1016/j.jfoodeng.2010.08.031 es_ES
dc.description.references Castro, W., Oblitas, J., De-La-Torre, M., Cotrina, C., Bazan, K., & Avila-George, H. (2019). Classification of Cape Gooseberry Fruit According to its Level of Ripeness Using Machine Learning Techniques and Different Color Spaces. IEEE Access, 7, 27389-27400. doi:10.1109/access.2019.2898223 es_ES
dc.description.references Valdez-Morones, T., Perez-Espinosa, H., Avila-George, H., Oblitas, J., & Castro, W. (2018). An Android App for detecting damage on tobacco (Nicotiana tabacum L.) leaves caused by blue mold (Penospora tabacina Adam). 2018 7th International Conference On Software Process Improvement (CIMPS). doi:10.1109/cimps.2018.8625628 es_ES
dc.description.references Castro, W., Oblitas, J., Chuquizuta, T., & Avila-George, H. (2017). Application of image analysis to optimization of the bread-making process based on the acceptability of the crust color. Journal of Cereal Science, 74, 194-199. doi:10.1016/j.jcs.2017.02.002 es_ES
dc.description.references De-la -Torre, M., Zatarain, O., Avila-George, H., Muñoz, M., Oblitas, J., Lozada, R., … Castro, W. (2019). Multivariate Analysis and Machine Learning for Ripeness Classification of Cape Gooseberry Fruits. Processes, 7(12), 928. doi:10.3390/pr7120928 es_ES
dc.description.references Fernández-Navarro, F., Hervás-Martínez, C., Gutiérrez, P. A., & Carbonero-Ruz, M. (2011). Evolutionary <mml:math altimg=«si13.gif» display=«inline» overflow=«scroll» xmlns:xocs=«http://www.elsevier.com/xml/xocs/dtd» xmlns:xs=«http://www.w3.org/2001/XMLSchema» xmlns:xsi=«http://www.w3.org/2001/XMLSchema-instance» xmlns=«http://www.elsevier.com/xml/ja/dtd» xmlns:ja=«http://www.elsevier.com/xml/ja/dtd» xmlns:mml=«http://www.w3.org/1998/Math/MathML» xmlns:tb=«http://www.elsevier.com/xml/common/table/dtd» xmlns:sb=«http://www.elsevier.com/xml/common/struct-bib/dtd» xmlns:ce=«http://www.elsevier.com/xml/common/dtd» xmlns:xlink=«http://www.w3.org/1999/xlink» xmlns:cals=«http://www.elsevier.com/xml/common/cals/dtd»><mml:mi>q</mml:mi></mml:math>-Gaussian radial basis function neural networks for multiclassification. Neural Networks, 24(7), 779-784. doi:10.1016/j.neunet.2011.03.014 es_ES
dc.description.references Huang, W., Oh, S.-K., & Pedrycz, W. (2014). Design of hybrid radial basis function neural networks (HRBFNNs) realized with the aid of hybridization of fuzzy clustering method (FCM) and polynomial neural networks (PNNs). Neural Networks, 60, 166-181. doi:10.1016/j.neunet.2014.08.007 es_ES
dc.description.references Zhou, Y., Nejati, H., Do, T.-T., Cheung, N.-M., & Cheah, L. (2016). Image-based vehicle analysis using deep neural network: A systematic study. 2016 IEEE International Conference on Digital Signal Processing (DSP). doi:10.1109/icdsp.2016.7868561 es_ES
dc.description.references Toliupa, S., Tereikovskyi, I., Tereikovskyi, O., Tereikovska, L., Nakonechnyi, V., & Kulakov, Y. (2020). Keyboard Dynamic Analysis by Alexnet Type Neural Network. 2020 IEEE 15th International Conference on Advanced Trends in Radioelectronics, Telecommunications and Computer Engineering (TCSET). doi:10.1109/tcset49122.2020.235466 es_ES
dc.description.references Lu, S., Lu, Z., & Zhang, Y.-D. (2019). Pathological brain detection based on AlexNet and transfer learning. Journal of Computational Science, 30, 41-47. doi:10.1016/j.jocs.2018.11.008 es_ES
dc.description.references Kraus, O. Z., Ba, J. L., & Frey, B. J. (2016). Classifying and segmenting microscopy images with deep multiple instance learning. Bioinformatics, 32(12), i52-i59. doi:10.1093/bioinformatics/btw252 es_ES
dc.description.references Du, C.-J., & Sun, D.-W. (2006). Learning techniques used in computer vision for food quality evaluation: a review. Journal of Food Engineering, 72(1), 39-55. doi:10.1016/j.jfoodeng.2004.11.017 es_ES
dc.description.references Brosnan, T., & Sun, D.-W. (2004). Improving quality inspection of food products by computer vision––a review. Journal of Food Engineering, 61(1), 3-16. doi:10.1016/s0260-8774(03)00183-3 es_ES
dc.description.references Baker, N., Lu, H., Erlikhman, G., & Kellman, P. J. (2018). Deep convolutional networks do not classify based on global object shape. PLOS Computational Biology, 14(12), e1006613. doi:10.1371/journal.pcbi.1006613 es_ES
dc.description.references Rohmatillah, M., Pramono, S. H., Rahmadwati, Suyono, H., & Sena, S. A. (2018). Automatic Cervical Cell Classification Using Features Extracted by Convolutional Neural Network. 2018 Electrical Power, Electronics, Communications, Controls and Informatics Seminar (EECCIS). doi:10.1109/eeccis.2018.8692888 es_ES
dc.description.references Sadanandan, S. K., Ranefall, P., & Wählby, C. (2016). Feature Augmented Deep Neural Networks for Segmentation of Cells. Computer Vision – ECCV 2016 Workshops, 231-243. doi:10.1007/978-3-319-46604-0_17 es_ES
dc.description.references Sharma, M., Bhave, A., & Janghel, R. R. (2019). White Blood Cell Classification Using Convolutional Neural Network. Soft Computing and Signal Processing, 135-143. doi:10.1007/978-981-13-3600-3_13 es_ES
dc.description.references Song, W., Li, S., Liu, J., Qin, H., Zhang, B., Zhang, S., & Hao, A. (2019). Multitask Cascade Convolution Neural Networks for Automatic Thyroid Nodule Detection and Recognition. IEEE Journal of Biomedical and Health Informatics, 23(3), 1215-1224. doi:10.1109/jbhi.2018.2852718 es_ES
dc.description.references Akram, S. U., Kannala, J., Eklund, L., & Heikkila, J. (2016). Cell proposal network for microscopy image analysis. 2016 IEEE International Conference on Image Processing (ICIP). doi:10.1109/icip.2016.7532950 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem