- -

Classification of the Microstructural Elements of the Vegetal Tissue of the Pumpkin (Cucurbita pepo L.) Using Convolutional Neural Networks

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Classification of the Microstructural Elements of the Vegetal Tissue of the Pumpkin (Cucurbita pepo L.) Using Convolutional Neural Networks

Mostrar el registro completo del ítem

Oblitas, J.; Mejía, J.; De-La-Torre, M.; Avila-George, H.; Seguí Gil, L.; Mayor López, L.; Ibarz, A.... (2021). Classification of the Microstructural Elements of the Vegetal Tissue of the Pumpkin (Cucurbita pepo L.) Using Convolutional Neural Networks. Applied Sciences. 11(4):1-13. https://doi.org/10.3390/app11041581

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/163576

Ficheros en el ítem

Metadatos del ítem

Título: Classification of the Microstructural Elements of the Vegetal Tissue of the Pumpkin (Cucurbita pepo L.) Using Convolutional Neural Networks
Autor: Oblitas, Jimy Mejía, Jezreel De-La-Torre, Miguel Avila-George, Himer Seguí Gil, Lucía Mayor López, Luis Ibarz, Albert Castro, Wilson
Entidad UPV: Universitat Politècnica de València. Departamento de Tecnología de Alimentos - Departament de Tecnologia d'Aliments
Universitat Politècnica de València. Departamento de Ingeniería Química y Nuclear - Departament d'Enginyeria Química i Nuclear
Fecha difusión:
Resumen:
[EN] Although knowledge of the microstructure of food of vegetal origin helps us to understand the behavior of food materials, the variability in the microstructural elements complicates this analysis. In this regard, the ...[+]
Palabras clave: Cucurbita pepo L. , Image processing , Micrograph , Plant tissue , CNN , RBNN
Derechos de uso: Reconocimiento (by)
Fuente:
Applied Sciences. (eissn: 2076-3417 )
DOI: 10.3390/app11041581
Editorial:
MDPI AG
Versión del editor: https://doi.org/10.3390/app11041581
Tipo: Artículo

References

Betoret, E., Betoret, N., Rocculi, P., & Dalla Rosa, M. (2015). Strategies to improve food functionality: Structure–property relationships on high pressures homogenization, vacuum impregnation and drying technologies. Trends in Food Science & Technology, 46(1), 1-12. doi:10.1016/j.tifs.2015.07.006

Fito, P., LeMaguer, M., Betoret, N., & Fito, P. J. (2007). Advanced food process engineering to model real foods and processes: The «SAFES» methodology. Journal of Food Engineering, 83(2), 173-185. doi:10.1016/j.jfoodeng.2007.02.017

Topete-Betancourt, A., De D. Figueroa-Cárdenas, J., Morales-Sánchez, E., Arámbula-Villa, G., & Pérez-Robles, J. F. (2019). EVALUATION OF THE MECHANISM OF OIL UPTAKE AND WATER LOSS DURING DEEP-FAT FRYING OF TORTILLA CHIPS. Revista Mexicana de Ingeniería Química, 19(1), 409-422. doi:10.24275/rmiq/alim605 [+]
Betoret, E., Betoret, N., Rocculi, P., & Dalla Rosa, M. (2015). Strategies to improve food functionality: Structure–property relationships on high pressures homogenization, vacuum impregnation and drying technologies. Trends in Food Science & Technology, 46(1), 1-12. doi:10.1016/j.tifs.2015.07.006

Fito, P., LeMaguer, M., Betoret, N., & Fito, P. J. (2007). Advanced food process engineering to model real foods and processes: The «SAFES» methodology. Journal of Food Engineering, 83(2), 173-185. doi:10.1016/j.jfoodeng.2007.02.017

Topete-Betancourt, A., De D. Figueroa-Cárdenas, J., Morales-Sánchez, E., Arámbula-Villa, G., & Pérez-Robles, J. F. (2019). EVALUATION OF THE MECHANISM OF OIL UPTAKE AND WATER LOSS DURING DEEP-FAT FRYING OF TORTILLA CHIPS. Revista Mexicana de Ingeniería Química, 19(1), 409-422. doi:10.24275/rmiq/alim605

Silva-Jara, J. M., López-Cruz, R., Ragazzo-Sánchez, J. A., & Calderón-Santoyo, M. (2019). Antagonistic microorganisms efficiency to suppress damage caused by Colletotrichum gloeosporioides in papaya crop: Perspectives and challenges. Revista Mexicana de Ingeniería Química, 19(2), 839-849. doi:10.24275/rmiq/bio788

Aguilera, J. M. (2005). Why food microstructure? Journal of Food Engineering, 67(1-2), 3-11. doi:10.1016/j.jfoodeng.2004.05.050

Pieczywek, P. M., & Zdunek, A. (2012). Automatic classification of cells and intercellular spaces of apple tissue. Computers and Electronics in Agriculture, 81, 72-78. doi:10.1016/j.compag.2011.11.006

Mayor, L., Pissarra, J., & Sereno, A. M. (2008). Microstructural changes during osmotic dehydration of parenchymatic pumpkin tissue. Journal of Food Engineering, 85(3), 326-339. doi:10.1016/j.jfoodeng.2007.06.038

Mebatsion, H. K., Verboven, P., Verlinden, B. E., Ho, Q. T., Nguyen, T. A., & Nicolaï, B. M. (2006). Microscale modelling of fruit tissue using Voronoi tessellations. Computers and Electronics in Agriculture, 52(1-2), 36-48. doi:10.1016/j.compag.2006.01.002

Oblitas-Cruz, J. F., Castro-Silupu, W. M., & Mayor-López, L. (2015). Effect of different combinations of size and shape parameters in the percentage error of classification of structural elements in vegetal tissue of the pumpkin Cucurbita pepo L. using probabilistic neural networks. Revista Facultad de Ingeniería Universidad de Antioquia, (78). doi:10.17533/udea.redin.n78a04

Meng, N., Lam, E. Y., Tsia, K. K., & So, H. K.-H. (2019). Large-Scale Multi-Class Image-Based Cell Classification With Deep Learning. IEEE Journal of Biomedical and Health Informatics, 23(5), 2091-2098. doi:10.1109/jbhi.2018.2878878

Adeshina, S. A., Adedigba, A. P., Adeniyi, A. A., & Aibinu, A. M. (2018). Breast Cancer Histopathology Image Classification with Deep Convolutional Neural Networks. 2018 14th International Conference on Electronics Computer and Computation (ICECCO). doi:10.1109/icecco.2018.8634690

Aliyu, H. A., Sudirman, R., Abdul Razak, M. A., & Abd Wahab, M. A. (2018). Red Blood Cell Classification: Deep Learning Architecture Versus Support Vector Machine. 2018 2nd International Conference on BioSignal Analysis, Processing and Systems (ICBAPS). doi:10.1109/icbaps.2018.8527398

Reddy, A. S. B., & Juliet, D. S. (2019). Transfer Learning with ResNet-50 for Malaria Cell-Image Classification. 2019 International Conference on Communication and Signal Processing (ICCSP). doi:10.1109/iccsp.2019.8697909

Mayor, L., Moreira, R., & Sereno, A. M. (2011). Shrinkage, density, porosity and shape changes during dehydration of pumpkin (Cucurbita pepo L.) fruits. Journal of Food Engineering, 103(1), 29-37. doi:10.1016/j.jfoodeng.2010.08.031

Castro, W., Oblitas, J., De-La-Torre, M., Cotrina, C., Bazan, K., & Avila-George, H. (2019). Classification of Cape Gooseberry Fruit According to its Level of Ripeness Using Machine Learning Techniques and Different Color Spaces. IEEE Access, 7, 27389-27400. doi:10.1109/access.2019.2898223

Valdez-Morones, T., Perez-Espinosa, H., Avila-George, H., Oblitas, J., & Castro, W. (2018). An Android App for detecting damage on tobacco (Nicotiana tabacum L.) leaves caused by blue mold (Penospora tabacina Adam). 2018 7th International Conference On Software Process Improvement (CIMPS). doi:10.1109/cimps.2018.8625628

Castro, W., Oblitas, J., Chuquizuta, T., & Avila-George, H. (2017). Application of image analysis to optimization of the bread-making process based on the acceptability of the crust color. Journal of Cereal Science, 74, 194-199. doi:10.1016/j.jcs.2017.02.002

De-la -Torre, M., Zatarain, O., Avila-George, H., Muñoz, M., Oblitas, J., Lozada, R., … Castro, W. (2019). Multivariate Analysis and Machine Learning for Ripeness Classification of Cape Gooseberry Fruits. Processes, 7(12), 928. doi:10.3390/pr7120928

Fernández-Navarro, F., Hervás-Martínez, C., Gutiérrez, P. A., & Carbonero-Ruz, M. (2011). Evolutionary <mml:math altimg=«si13.gif» display=«inline» overflow=«scroll» xmlns:xocs=«http://www.elsevier.com/xml/xocs/dtd» xmlns:xs=«http://www.w3.org/2001/XMLSchema» xmlns:xsi=«http://www.w3.org/2001/XMLSchema-instance» xmlns=«http://www.elsevier.com/xml/ja/dtd» xmlns:ja=«http://www.elsevier.com/xml/ja/dtd» xmlns:mml=«http://www.w3.org/1998/Math/MathML» xmlns:tb=«http://www.elsevier.com/xml/common/table/dtd» xmlns:sb=«http://www.elsevier.com/xml/common/struct-bib/dtd» xmlns:ce=«http://www.elsevier.com/xml/common/dtd» xmlns:xlink=«http://www.w3.org/1999/xlink» xmlns:cals=«http://www.elsevier.com/xml/common/cals/dtd»><mml:mi>q</mml:mi></mml:math>-Gaussian radial basis function neural networks for multiclassification. Neural Networks, 24(7), 779-784. doi:10.1016/j.neunet.2011.03.014

Huang, W., Oh, S.-K., & Pedrycz, W. (2014). Design of hybrid radial basis function neural networks (HRBFNNs) realized with the aid of hybridization of fuzzy clustering method (FCM) and polynomial neural networks (PNNs). Neural Networks, 60, 166-181. doi:10.1016/j.neunet.2014.08.007

Zhou, Y., Nejati, H., Do, T.-T., Cheung, N.-M., & Cheah, L. (2016). Image-based vehicle analysis using deep neural network: A systematic study. 2016 IEEE International Conference on Digital Signal Processing (DSP). doi:10.1109/icdsp.2016.7868561

Toliupa, S., Tereikovskyi, I., Tereikovskyi, O., Tereikovska, L., Nakonechnyi, V., & Kulakov, Y. (2020). Keyboard Dynamic Analysis by Alexnet Type Neural Network. 2020 IEEE 15th International Conference on Advanced Trends in Radioelectronics, Telecommunications and Computer Engineering (TCSET). doi:10.1109/tcset49122.2020.235466

Lu, S., Lu, Z., & Zhang, Y.-D. (2019). Pathological brain detection based on AlexNet and transfer learning. Journal of Computational Science, 30, 41-47. doi:10.1016/j.jocs.2018.11.008

Kraus, O. Z., Ba, J. L., & Frey, B. J. (2016). Classifying and segmenting microscopy images with deep multiple instance learning. Bioinformatics, 32(12), i52-i59. doi:10.1093/bioinformatics/btw252

Du, C.-J., & Sun, D.-W. (2006). Learning techniques used in computer vision for food quality evaluation: a review. Journal of Food Engineering, 72(1), 39-55. doi:10.1016/j.jfoodeng.2004.11.017

Brosnan, T., & Sun, D.-W. (2004). Improving quality inspection of food products by computer vision––a review. Journal of Food Engineering, 61(1), 3-16. doi:10.1016/s0260-8774(03)00183-3

Baker, N., Lu, H., Erlikhman, G., & Kellman, P. J. (2018). Deep convolutional networks do not classify based on global object shape. PLOS Computational Biology, 14(12), e1006613. doi:10.1371/journal.pcbi.1006613

Rohmatillah, M., Pramono, S. H., Rahmadwati, Suyono, H., & Sena, S. A. (2018). Automatic Cervical Cell Classification Using Features Extracted by Convolutional Neural Network. 2018 Electrical Power, Electronics, Communications, Controls and Informatics Seminar (EECCIS). doi:10.1109/eeccis.2018.8692888

Sadanandan, S. K., Ranefall, P., & Wählby, C. (2016). Feature Augmented Deep Neural Networks for Segmentation of Cells. Computer Vision – ECCV 2016 Workshops, 231-243. doi:10.1007/978-3-319-46604-0_17

Sharma, M., Bhave, A., & Janghel, R. R. (2019). White Blood Cell Classification Using Convolutional Neural Network. Soft Computing and Signal Processing, 135-143. doi:10.1007/978-981-13-3600-3_13

Song, W., Li, S., Liu, J., Qin, H., Zhang, B., Zhang, S., & Hao, A. (2019). Multitask Cascade Convolution Neural Networks for Automatic Thyroid Nodule Detection and Recognition. IEEE Journal of Biomedical and Health Informatics, 23(3), 1215-1224. doi:10.1109/jbhi.2018.2852718

Akram, S. U., Kannala, J., Eklund, L., & Heikkila, J. (2016). Cell proposal network for microscopy image analysis. 2016 IEEE International Conference on Image Processing (ICIP). doi:10.1109/icip.2016.7532950

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem