Rong, M., Lin, L., Song, X., Zhao, T., Zhong, Y., Yan, J., … Chen, X. (2014). A Label-Free Fluorescence Sensing Approach for Selective and Sensitive Detection of 2,4,6-Trinitrophenol (TNP) in Aqueous Solution Using Graphitic Carbon Nitride Nanosheets. Analytical Chemistry, 87(2), 1288-1296. doi:10.1021/ac5039913
Shanmugaraju, S., Joshi, S. A., & Mukherjee, P. S. (2011). Fluorescence and visual sensing of nitroaromatic explosives using electron rich discrete fluorophores. Journal of Materials Chemistry, 21(25), 9130. doi:10.1039/c1jm10406c
Rapp-Wright, H., McEneff, G., Murphy, B., Gamble, S., Morgan, R., Beardah, M., & Barron, L. (2017). Suspect screening and quantification of trace organic explosives in wastewater using solid phase extraction and liquid chromatography-high resolution accurate mass spectrometry. Journal of Hazardous Materials, 329, 11-21. doi:10.1016/j.jhazmat.2017.01.008
[+]
Rong, M., Lin, L., Song, X., Zhao, T., Zhong, Y., Yan, J., … Chen, X. (2014). A Label-Free Fluorescence Sensing Approach for Selective and Sensitive Detection of 2,4,6-Trinitrophenol (TNP) in Aqueous Solution Using Graphitic Carbon Nitride Nanosheets. Analytical Chemistry, 87(2), 1288-1296. doi:10.1021/ac5039913
Shanmugaraju, S., Joshi, S. A., & Mukherjee, P. S. (2011). Fluorescence and visual sensing of nitroaromatic explosives using electron rich discrete fluorophores. Journal of Materials Chemistry, 21(25), 9130. doi:10.1039/c1jm10406c
Rapp-Wright, H., McEneff, G., Murphy, B., Gamble, S., Morgan, R., Beardah, M., & Barron, L. (2017). Suspect screening and quantification of trace organic explosives in wastewater using solid phase extraction and liquid chromatography-high resolution accurate mass spectrometry. Journal of Hazardous Materials, 329, 11-21. doi:10.1016/j.jhazmat.2017.01.008
Salinas, Y., Martínez-Máñez, R., Marcos, M. D., Sancenón, F., Costero, A. M., Parra, M., & Gil, S. (2012). Optical chemosensors and reagents to detect explosives. Chem. Soc. Rev., 41(3), 1261-1296. doi:10.1039/c1cs15173h
Martínez-Máñez, R., & Sancenón, F. (2006). Chemodosimeters and 3D inorganic functionalised hosts for the fluoro-chromogenic sensing of anions. Coordination Chemistry Reviews, 250(23-24), 3081-3093. doi:10.1016/j.ccr.2006.04.016
Koster, L. J. A., Mihailetchi, V. D., & Blom, P. W. M. (2006). Ultimate efficiency of polymer/fullerene bulk heterojunction solar cells. Applied Physics Letters, 88(9), 093511. doi:10.1063/1.2181635
ZEMAN, S. (2006). New aspects of initiation reactivities of energetic materials demonstrated on nitramines☆☆☆. Journal of Hazardous Materials, 132(2-3), 155-164. doi:10.1016/j.jhazmat.2005.07.086
Tang, C. W. (1986). Two‐layer organic photovoltaic cell. Applied Physics Letters, 48(2), 183-185. doi:10.1063/1.96937
Caygill, J. S., Davis, F., & Higson, S. P. J. (2012). Current trends in explosive detection techniques. Talanta, 88, 14-29. doi:10.1016/j.talanta.2011.11.043
Ramanavicius, A., Kurilcik, N., Jursenas, S., Finkelsteinas, A., & Ramanaviciene, A. (2007). Conducting polymer based fluorescence quenching as a new approach to increase the selectivity of immunosensors. Biosensors and Bioelectronics, 23(4), 499-505. doi:10.1016/j.bios.2007.06.013
Ramanavicius, A., Ryskevic, N., Oztekin, Y., Kausaite-Minkstimiene, A., Jursenas, S., Baniukevic, J., … Ramanaviciene, A. (2010). Immunosensor based on fluorescence quenching matrix of the conducting polymer polypyrrole. Analytical and Bioanalytical Chemistry, 398(7-8), 3105-3113. doi:10.1007/s00216-010-4265-8
Sun, X., Wang, Y., & Lei, Y. (2015). Fluorescence based explosive detection: from mechanisms to sensory materials. Chemical Society Reviews, 44(22), 8019-8061. doi:10.1039/c5cs00496a
Xu, Y., Wu, X., Chen, Y., Hang, H., Tong, H., & Wang, L. (2016). Star-shaped triazatruxene derivatives for rapid fluorescence fiber-optic detection of nitroaromatic explosive vapors. RSC Adv., 6(38), 31915-31918. doi:10.1039/c6ra04553g
Jiang, N., Li, G., Che, W., Zhu, D., Su, Z., & Bryce, M. R. (2018). Polyurethane derivatives for highly sensitive and selective fluorescence detection of 2,4,6-trinitrophenol (TNP). Journal of Materials Chemistry C, 6(42), 11287-11291. doi:10.1039/c8tc04250k
Yang, J.-S., & Swager, T. M. (1998). Porous Shape Persistent Fluorescent Polymer Films: An Approach to TNT Sensory Materials. Journal of the American Chemical Society, 120(21), 5321-5322. doi:10.1021/ja9742996
Yang, J.-S., & Swager, T. M. (1998). Fluorescent Porous Polymer Films as TNT Chemosensors: Electronic and Structural Effects. Journal of the American Chemical Society, 120(46), 11864-11873. doi:10.1021/ja982293q
Thomas, S. W., Joly, G. D., & Swager, T. M. (2007). Chemical Sensors Based on Amplifying Fluorescent Conjugated Polymers. Chemical Reviews, 107(4), 1339-1386. doi:10.1021/cr0501339
Nie, H., Ma, H., Zhang, M., & Zhong, Y. (2015). A novel electropolymerized fluorescent film probe for TNT based on electro-active conjugated copolymer. Talanta, 144, 1111-1115. doi:10.1016/j.talanta.2015.07.056
He, G., Yan, N., Yang, J., Wang, H., Ding, L., Yin, S., & Fang, Y. (2011). Pyrene-Containing Conjugated Polymer-Based Fluorescent Films for Highly Sensitive and Selective Sensing of TNT in Aqueous Medium. Macromolecules, 44(12), 4759-4766. doi:10.1021/ma200953s
Andrew, T. L., & Swager, T. M. (2007). A Fluorescence Turn-On Mechanism to Detect High Explosives RDX and PETN. Journal of the American Chemical Society, 129(23), 7254-7255. doi:10.1021/ja071911c
Dasary, S. S. R., Singh, A. K., Lee, K. S., Yu, H., & Ray, P. C. (2018). A miniaturized fiber-optic fluorescence analyzer for detection of Picric-acid explosive from commercial and environmental samples. Sensors and Actuators B: Chemical, 255, 1646-1654. doi:10.1016/j.snb.2017.08.175
Deshmukh, M. A., Gicevicius, M., Ramanaviciene, A., Shirsat, M. D., Viter, R., & Ramanavicius, A. (2017). Hybrid electrochemical/electrochromic Cu(II) ion sensor prototype based on PANI/ITO-electrode. Sensors and Actuators B: Chemical, 248, 527-535. doi:10.1016/j.snb.2017.03.167
MacDiarmid, A. G. (2001). «Synthetic Metals»: A Novel Role for Organic Polymers (Nobel Lecture). Angewandte Chemie International Edition, 40(14), 2581-2590. doi:10.1002/1521-3773(20010716)40:14<2581::aid-anie2581>3.0.co;2-2
Basavaraja, C., Pierson, R., Huh, D. S., Venkataraman, A., & Basavaraja, S. (2009). Studies on properties of polyaniline-dodecylbenzene sulfonic acid composite films synthesized using different oxidants. Macromolecular Research, 17(8), 609-615. doi:10.1007/bf03218917
Mikhaylov, S., Ogurtsov, N., Noskov, Y., Redon, N., Coddeville, P., Wojkiewicz, J.-L., & Pud, A. (2015). Ammonia/amine electronic gas sensors based on hybrid polyaniline–TiO2 nanocomposites. The effects of titania and the surface active doping acid. RSC Advances, 5(26), 20218-20226. doi:10.1039/c4ra16121a
Mikhaylov, S., Ogurtsov, N. A., Redon, N., Coddeville, P., Wojkiewicz, J.-L., & Pud, A. A. (2016). The PANI-DBSA content and dispersing solvent as influencing parameters in sensing performances of TiO2/PANI-DBSA hybrid nanocomposites to ammonia. RSC Advances, 6(86), 82625-82634. doi:10.1039/c6ra12693f
Zhang, Y., Kim, J. J., Chen, D., Tuller, H. L., & Rutledge, G. C. (2014). Electrospun Polyaniline Fibers as Highly Sensitive Room Temperature Chemiresistive Sensors for Ammonia and Nitrogen Dioxide Gases. Advanced Functional Materials, 24(25), 4005-4014. doi:10.1002/adfm.201400185
Nipper, M., Carr, R. S., Biedenbach, J. M., Hooten, R. L., & Miller, K. (2005). Fate and effects of picric acid and 2,6-DNT in marine environments: Toxicity of degradation products. Marine Pollution Bulletin, 50(11), 1205-1217. doi:10.1016/j.marpolbul.2005.04.019
Singh, R., Mitra, K., Singh, S., Senapati, S., Patel, V. K., Vishwakarma, S., … Ray, B. (2019). Highly selective fluorescence ‘turn off’ sensing of picric acid and efficient cell labelling by water-soluble luminescent anthracene-bridged poly(N-vinyl pyrrolidone). The Analyst, 144(11), 3620-3634. doi:10.1039/c8an02417k
Geng, T., Zhu, Z., Zhang, W., & Wang, Y. (2017). A nitrogen-rich fluorescent conjugated microporous polymer with triazine and triphenylamine units for high iodine capture and nitro aromatic compound detection. Journal of Materials Chemistry A, 5(16), 7612-7617. doi:10.1039/c7ta00590c
Bharadwaj, V., Park, J. E., Sahoo, S. K., & Choi, H. (2019). Selective Fluorescent Turn‐Off Detection of Picric Acid Using a Novel Tripodal Supramolecular Triazole‐Trindane‐Based Receptor. ChemistrySelect, 4(36), 10895-10901. doi:10.1002/slct.201902718
Sharma, A., Kim, D., Park, J.-H., Rakshit, S., Seong, J., Jeong, G. H., … Lah, M. S. (2019). Mechanistic insight into the sensing of nitroaromatic compounds by metal-organic frameworks. Communications Chemistry, 2(1). doi:10.1038/s42004-019-0135-2
Chakravarty, S., Gogoi, B., & Sen Sarma, N. (2015). Fluorescent probes for detection of picric acid explosive: A greener approach. Journal of Luminescence, 165, 6-14. doi:10.1016/j.jlumin.2015.04.006
Bacon, J., & Adams, R. N. (1968). Anodic oxidations of aromatic amines. III. Substituted anilines in aqueous media. Journal of the American Chemical Society, 90(24), 6596-6599. doi:10.1021/ja01026a005
Wawzonek, S., & McIntyre, T. W. (1967). Electrolytic Oxidation of Aromatic Amines. Journal of The Electrochemical Society, 114(10), 1025. doi:10.1149/1.2424177
Morávková, Z., & Bober, P. (2018). Writing in a Polyaniline Film with Laser Beam and Stability of the Record: A Raman Spectroscopy Study. International Journal of Polymer Science, 2018, 1-8. doi:10.1155/2018/1797216
Silva, J. E. P. da, Temperini, M. L. A., & Torresi, S. I. C. de. (2005). Characterization of conducting polyaniline blends by Resonance Raman Spectroscopy. Journal of the Brazilian Chemical Society, 16(3a), 322-327. doi:10.1590/s0103-50532005000300005
Wudl, F., Kobayashi, M., & Heeger, A. J. (1984). Poly(isothianaphthene). The Journal of Organic Chemistry, 49(18), 3382-3384. doi:10.1021/jo00192a027
Trchová, M., Morávková, Z., Šeděnková, I., & Stejskal, J. (2012). Spectroscopy of thin polyaniline films deposited during chemical oxidation of aniline. Chemical Papers, 66(5). doi:10.2478/s11696-012-0142-6
Masilamani, V., Ghaithan, H. M., Aljaafreh, M. J., Ahmed, A., al Thagafi, R., Prasad, S., & Alsalhi, M. S. (2017). Using a Spectrofluorometer for Resonance Raman Spectra of Organic Molecules. Journal of Spectroscopy, 2017, 1-7. doi:10.1155/2017/4289830
Afzal, A. B., Akhtar, M. J., & Ahmad, M. (2010). Morphological studies of DBSA-doped polyaniline/PVC blends. Journal of Electron Microscopy, 59(5), 339-344. doi:10.1093/jmicro/dfq050
Ahmed, S. M. (2002). Preparation and degradation of highly conducting polyaniline doped with picric acid. European Polymer Journal, 38(6), 1151-1158. doi:10.1016/s0014-3057(01)00293-2
Nguyen, K. T., Li, D., Borah, P., Ma, X., Liu, Z., Zhu, L., … Zhao, Y. (2013). Photoinduced Charge Transfer within Polyaniline-Encapsulated Quantum Dots Decorated on Graphene. ACS Applied Materials & Interfaces, 5(16), 8105-8110. doi:10.1021/am402182z
Colomban, P., Folch, S., & Gruger, A. (1999). Vibrational Study of Short-Range Order and Structure of Polyaniline Bases and Salts. Macromolecules, 32(9), 3080-3092. doi:10.1021/ma981018l
Shimano, J. Y., & MacDiarmid, A. G. (2001). Polyaniline, a dynamic block copolymer: key to attaining its intrinsic conductivity? Synthetic Metals, 123(2), 251-262. doi:10.1016/s0379-6779(01)00293-4
Sambyal, P., Singh, A. P., Verma, M., Farukh, M., Singh, B. P., & Dhawan, S. K. (2014). Tailored polyaniline/barium strontium titanate/expanded graphite multiphase composite for efficient radar absorption. RSC Advances, 4(24), 12614. doi:10.1039/c3ra46479b
Hengchang, M., Zhongwei, Z., Yuanyuan, J., Lajia, Z., Chunxuan, Q., Haiying, C., … Ziqiang, L. (2015). Triphenylamine-decorated BODIPY fluorescent probe for trace detection of picric acid. RSC Advances, 5(106), 87157-87167. doi:10.1039/c5ra12154j
Bhalla, V., Gupta, A., Kumar, M., Rao, D. S. S., & Prasad, S. K. (2013). Self-Assembled Pentacenequinone Derivative for Trace Detection of Picric Acid. ACS Applied Materials & Interfaces, 5(3), 672-679. doi:10.1021/am302132h
Chen, Y.-G., Zhao, D., He, Z.-K., & Ai, X.-P. (2007). Fluorescence quenching of water-soluble conjugated polymer by metal cations and its application in sensor. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 66(2), 448-452. doi:10.1016/j.saa.2006.03.021
Sathish, V., Ramdass, A., Velayudham, M., Lu, K.-L., Thanasekaran, P., & Rajagopal, S. (2017). Development of luminescent sensors based on transition metal complexes for the detection of nitroexplosives. Dalton Transactions, 46(48), 16738-16769. doi:10.1039/c7dt02790g
Goodpaster, J. V., & McGuffin, V. L. (2001). Fluorescence Quenching as an Indirect Detection Method for Nitrated Explosives. Analytical Chemistry, 73(9), 2004-2011. doi:10.1021/ac001347n
Shanmugaraju, S., Dabadie, C., Byrne, K., Savyasachi, A. J., Umadevi, D., Schmitt, W., … Gunnlaugsson, T. (2017). A supramolecular Tröger’s base derived coordination zinc polymer for fluorescent sensing of phenolic-nitroaromatic explosives in water. Chemical Science, 8(2), 1535-1546. doi:10.1039/c6sc04367d
He, G., Zhang, G., Lü, F., & Fang, Y. (2009). Fluorescent Film Sensor for Vapor-Phase Nitroaromatic Explosives via Monolayer Assembly of Oligo(diphenylsilane) on Glass Plate Surfaces. Chemistry of Materials, 21(8), 1494-1499. doi:10.1021/cm900013f
Wenfeng, L., Hengchang, M., & Ziqiang, L. (2014). Self-assembled triphenylamine derivative for trace detection of picric acid. RSC Adv., 4(74), 39351-39358. doi:10.1039/c4ra05843g
Li, Q., Tan, X., Fu, L., Liu, Q., & Tang, W. (2015). A novel fluorescence and resonance Rayleigh scattering probe based on quantum dots for the detection of albendazole. Analytical Methods, 7(2), 614-620. doi:10.1039/c4ay02289k
D. Jawale Patil, P., D. Ingle, R., M. Wagalgave, S., S. Bhosale, R., V. Bhosale, S., P. Pawar, R., & V. Bhosale, S. (2019). A Naphthalimide-Benzothiazole Conjugate as Colorimetric and Fluorescent Sensor for Selective Trinitrophenol Detection. Chemosensors, 7(3), 38. doi:10.3390/chemosensors7030038
Madhu, P., & Sivakumar, P. (2019). Curcumin-based fluorescent chemosensor for selective and efficient detection of picric acid. Journal of Molecular Structure, 1185, 410-415. doi:10.1016/j.molstruc.2019.02.112
Gowri, A., Vignesh, R., & Kathiravan, A. (2019). Anthracene based AIEgen for picric acid detection in real water samples. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 220, 117144. doi:10.1016/j.saa.2019.117144
Yao, H., & Fukui, C. (2016). Size and morphology effects on the fluorescence properties of π-conjugated poly(p-phenylene) polyelectrolyte nanoparticles synthesized via polyion association. Journal of Materials Chemistry C, 4(14), 2945-2953. doi:10.1039/c5tc03337c
Lakshmidevi, V., Yelamaggad, C. V., & Venkataraman, A. (2018). Studies on Fluorescence Quenching of DBSA-PANI-Employing Nitroaromatics. ChemistrySelect, 3(9), 2655-2664. doi:10.1002/slct.201702992
Prabu, H. G., Talawar, M. B., Mukundan, T., & Asthana, S. N. (2011). Studies on the utilization of stripping voltammetry technique in the detection of high-energy materials. Combustion, Explosion, and Shock Waves, 47(1), 87-95. doi:10.1134/s0010508211010126
Venkatramaiah, N., Firmino, A. D. G., Almeida Paz, F. A., & Tomé, J. P. C. (2014). Fast detection of nitroaromatics using phosphonate pyrene motifs as dual chemosensors. Chem. Commun., 50(68), 9683-9686. doi:10.1039/c4cc03980g
Haram, S. K., Quinn, B. M., & Bard, A. J. (2001). Electrochemistry of CdS Nanoparticles: A Correlation between Optical and Electrochemical Band Gaps. Journal of the American Chemical Society, 123(36), 8860-8861. doi:10.1021/ja0158206
Huang, J., & Wan, M. (1999). In situ doping polymerization of polyaniline microtubules in the presence of ?-naphthalenesulfonic acid. Journal of Polymer Science Part A: Polymer Chemistry, 37(2), 151-157. doi:10.1002/(sici)1099-0518(19990115)37:2<151::aid-pola5>3.0.co;2-r
[-]