- -

Mechanistic Insight into the Turn-Off Sensing of Nitroaromatic Compounds Employing Functionalized Polyaniline

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Mechanistic Insight into the Turn-Off Sensing of Nitroaromatic Compounds Employing Functionalized Polyaniline

Mostrar el registro completo del ítem

Venkatappa, L.; Ture, SA.; Yelamaggad, CV.; Sundaram, VNN.; Martínez-Máñez, R.; Abbaraju, V. (2020). Mechanistic Insight into the Turn-Off Sensing of Nitroaromatic Compounds Employing Functionalized Polyaniline. ChemistrySelect. 5(21):6321-6330. https://doi.org/10.1002/slct.202001170

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/163763

Ficheros en el ítem

Metadatos del ítem

Título: Mechanistic Insight into the Turn-Off Sensing of Nitroaromatic Compounds Employing Functionalized Polyaniline
Autor: Venkatappa, Lakshmidevi Ture, Satish Ashok Yelamaggad, Channabasaveshwar V. Sundaram, Venkata Narayanan Naranammalpu Martínez-Máñez, Ramón Abbaraju, Venkataraman
Entidad UPV: Universitat Politècnica de València. Departamento de Química - Departament de Química
Fecha difusión:
Resumen:
[EN] Conducting Polymers (CPs), in recent times have contributed significantly in the detection of High Energy Materials possessing nitro functional groups through fluorescence quenching studies. Camphor sulphuric acid ...[+]
Palabras clave: Doped polyaniline , Fluorescence quenching , Picric acid , Cyclic voltammetry , Raman spectroscopy
Derechos de uso: Cerrado
Fuente:
ChemistrySelect. (eissn: 2365-6549 )
DOI: 10.1002/slct.202001170
Editorial:
John Wiley & Sons
Versión del editor: https://doi.org/10.1002/slct.202001170
Código del Proyecto:
info:eu-repo/grantAgreement/Premier Explosives Limited//H%2FA: 4254/
info:eu-repo/grantAgreement/GVA//PROMETEO%2F2018%2F024/ES/Sistemas avanzados de liberación controlada/
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-100910-B-C41/ES/MATERIALES POROSOS INTELIGENTES MULTIFUNCIONALES Y DISPOSITIVOS ELECTRONICOS PARA LA LIBERACION DE FARMACOS, DETECCION DE DROGAS Y BIOMARCADORES Y COMUNICACION A NANOESCALA/
Agradecimientos:
The authors greatly acknowledge and thank Prof. G. U. Kulkarni, the Director of Centre for Nano and Soft Matter (CeNS) for providing the facility to work in the centre. Specifically, one of our author, Satish Ashok Ture, ...[+]
Tipo: Artículo

References

Rong, M., Lin, L., Song, X., Zhao, T., Zhong, Y., Yan, J., … Chen, X. (2014). A Label-Free Fluorescence Sensing Approach for Selective and Sensitive Detection of 2,4,6-Trinitrophenol (TNP) in Aqueous Solution Using Graphitic Carbon Nitride Nanosheets. Analytical Chemistry, 87(2), 1288-1296. doi:10.1021/ac5039913

Shanmugaraju, S., Joshi, S. A., & Mukherjee, P. S. (2011). Fluorescence and visual sensing of nitroaromatic explosives using electron rich discrete fluorophores. Journal of Materials Chemistry, 21(25), 9130. doi:10.1039/c1jm10406c

Rapp-Wright, H., McEneff, G., Murphy, B., Gamble, S., Morgan, R., Beardah, M., & Barron, L. (2017). Suspect screening and quantification of trace organic explosives in wastewater using solid phase extraction and liquid chromatography-high resolution accurate mass spectrometry. Journal of Hazardous Materials, 329, 11-21. doi:10.1016/j.jhazmat.2017.01.008 [+]
Rong, M., Lin, L., Song, X., Zhao, T., Zhong, Y., Yan, J., … Chen, X. (2014). A Label-Free Fluorescence Sensing Approach for Selective and Sensitive Detection of 2,4,6-Trinitrophenol (TNP) in Aqueous Solution Using Graphitic Carbon Nitride Nanosheets. Analytical Chemistry, 87(2), 1288-1296. doi:10.1021/ac5039913

Shanmugaraju, S., Joshi, S. A., & Mukherjee, P. S. (2011). Fluorescence and visual sensing of nitroaromatic explosives using electron rich discrete fluorophores. Journal of Materials Chemistry, 21(25), 9130. doi:10.1039/c1jm10406c

Rapp-Wright, H., McEneff, G., Murphy, B., Gamble, S., Morgan, R., Beardah, M., & Barron, L. (2017). Suspect screening and quantification of trace organic explosives in wastewater using solid phase extraction and liquid chromatography-high resolution accurate mass spectrometry. Journal of Hazardous Materials, 329, 11-21. doi:10.1016/j.jhazmat.2017.01.008

Salinas, Y., Martínez-Máñez, R., Marcos, M. D., Sancenón, F., Costero, A. M., Parra, M., & Gil, S. (2012). Optical chemosensors and reagents to detect explosives. Chem. Soc. Rev., 41(3), 1261-1296. doi:10.1039/c1cs15173h

Martínez-Máñez, R., & Sancenón, F. (2006). Chemodosimeters and 3D inorganic functionalised hosts for the fluoro-chromogenic sensing of anions. Coordination Chemistry Reviews, 250(23-24), 3081-3093. doi:10.1016/j.ccr.2006.04.016

Koster, L. J. A., Mihailetchi, V. D., & Blom, P. W. M. (2006). Ultimate efficiency of polymer/fullerene bulk heterojunction solar cells. Applied Physics Letters, 88(9), 093511. doi:10.1063/1.2181635

ZEMAN, S. (2006). New aspects of initiation reactivities of energetic materials demonstrated on nitramines☆☆☆. Journal of Hazardous Materials, 132(2-3), 155-164. doi:10.1016/j.jhazmat.2005.07.086

Tang, C. W. (1986). Two‐layer organic photovoltaic cell. Applied Physics Letters, 48(2), 183-185. doi:10.1063/1.96937

Caygill, J. S., Davis, F., & Higson, S. P. J. (2012). Current trends in explosive detection techniques. Talanta, 88, 14-29. doi:10.1016/j.talanta.2011.11.043

Ramanavicius, A., Kurilcik, N., Jursenas, S., Finkelsteinas, A., & Ramanaviciene, A. (2007). Conducting polymer based fluorescence quenching as a new approach to increase the selectivity of immunosensors. Biosensors and Bioelectronics, 23(4), 499-505. doi:10.1016/j.bios.2007.06.013

Ramanavicius, A., Ryskevic, N., Oztekin, Y., Kausaite-Minkstimiene, A., Jursenas, S., Baniukevic, J., … Ramanaviciene, A. (2010). Immunosensor based on fluorescence quenching matrix of the conducting polymer polypyrrole. Analytical and Bioanalytical Chemistry, 398(7-8), 3105-3113. doi:10.1007/s00216-010-4265-8

Sun, X., Wang, Y., & Lei, Y. (2015). Fluorescence based explosive detection: from mechanisms to sensory materials. Chemical Society Reviews, 44(22), 8019-8061. doi:10.1039/c5cs00496a

Xu, Y., Wu, X., Chen, Y., Hang, H., Tong, H., & Wang, L. (2016). Star-shaped triazatruxene derivatives for rapid fluorescence fiber-optic detection of nitroaromatic explosive vapors. RSC Adv., 6(38), 31915-31918. doi:10.1039/c6ra04553g

Jiang, N., Li, G., Che, W., Zhu, D., Su, Z., & Bryce, M. R. (2018). Polyurethane derivatives for highly sensitive and selective fluorescence detection of 2,4,6-trinitrophenol (TNP). Journal of Materials Chemistry C, 6(42), 11287-11291. doi:10.1039/c8tc04250k

Yang, J.-S., & Swager, T. M. (1998). Porous Shape Persistent Fluorescent Polymer Films:  An Approach to TNT Sensory Materials. Journal of the American Chemical Society, 120(21), 5321-5322. doi:10.1021/ja9742996

Yang, J.-S., & Swager, T. M. (1998). Fluorescent Porous Polymer Films as TNT Chemosensors:  Electronic and Structural Effects. Journal of the American Chemical Society, 120(46), 11864-11873. doi:10.1021/ja982293q

Thomas, S. W., Joly, G. D., & Swager, T. M. (2007). Chemical Sensors Based on Amplifying Fluorescent Conjugated Polymers. Chemical Reviews, 107(4), 1339-1386. doi:10.1021/cr0501339

Nie, H., Ma, H., Zhang, M., & Zhong, Y. (2015). A novel electropolymerized fluorescent film probe for TNT based on electro-active conjugated copolymer. Talanta, 144, 1111-1115. doi:10.1016/j.talanta.2015.07.056

He, G., Yan, N., Yang, J., Wang, H., Ding, L., Yin, S., & Fang, Y. (2011). Pyrene-Containing Conjugated Polymer-Based Fluorescent Films for Highly Sensitive and Selective Sensing of TNT in Aqueous Medium. Macromolecules, 44(12), 4759-4766. doi:10.1021/ma200953s

Andrew, T. L., & Swager, T. M. (2007). A Fluorescence Turn-On Mechanism to Detect High Explosives RDX and PETN. Journal of the American Chemical Society, 129(23), 7254-7255. doi:10.1021/ja071911c

Dasary, S. S. R., Singh, A. K., Lee, K. S., Yu, H., & Ray, P. C. (2018). A miniaturized fiber-optic fluorescence analyzer for detection of Picric-acid explosive from commercial and environmental samples. Sensors and Actuators B: Chemical, 255, 1646-1654. doi:10.1016/j.snb.2017.08.175

Deshmukh, M. A., Gicevicius, M., Ramanaviciene, A., Shirsat, M. D., Viter, R., & Ramanavicius, A. (2017). Hybrid electrochemical/electrochromic Cu(II) ion sensor prototype based on PANI/ITO-electrode. Sensors and Actuators B: Chemical, 248, 527-535. doi:10.1016/j.snb.2017.03.167

MacDiarmid, A. G. (2001). «Synthetic Metals»: A Novel Role for Organic Polymers (Nobel Lecture). Angewandte Chemie International Edition, 40(14), 2581-2590. doi:10.1002/1521-3773(20010716)40:14<2581::aid-anie2581>3.0.co;2-2

Basavaraja, C., Pierson, R., Huh, D. S., Venkataraman, A., & Basavaraja, S. (2009). Studies on properties of polyaniline-dodecylbenzene sulfonic acid composite films synthesized using different oxidants. Macromolecular Research, 17(8), 609-615. doi:10.1007/bf03218917

Mikhaylov, S., Ogurtsov, N., Noskov, Y., Redon, N., Coddeville, P., Wojkiewicz, J.-L., & Pud, A. (2015). Ammonia/amine electronic gas sensors based on hybrid polyaniline–TiO2 nanocomposites. The effects of titania and the surface active doping acid. RSC Advances, 5(26), 20218-20226. doi:10.1039/c4ra16121a

Mikhaylov, S., Ogurtsov, N. A., Redon, N., Coddeville, P., Wojkiewicz, J.-L., & Pud, A. A. (2016). The PANI-DBSA content and dispersing solvent as influencing parameters in sensing performances of TiO2/PANI-DBSA hybrid nanocomposites to ammonia. RSC Advances, 6(86), 82625-82634. doi:10.1039/c6ra12693f

Zhang, Y., Kim, J. J., Chen, D., Tuller, H. L., & Rutledge, G. C. (2014). Electrospun Polyaniline Fibers as Highly Sensitive Room Temperature Chemiresistive Sensors for Ammonia and Nitrogen Dioxide Gases. Advanced Functional Materials, 24(25), 4005-4014. doi:10.1002/adfm.201400185

Nipper, M., Carr, R. S., Biedenbach, J. M., Hooten, R. L., & Miller, K. (2005). Fate and effects of picric acid and 2,6-DNT in marine environments: Toxicity of degradation products. Marine Pollution Bulletin, 50(11), 1205-1217. doi:10.1016/j.marpolbul.2005.04.019

Singh, R., Mitra, K., Singh, S., Senapati, S., Patel, V. K., Vishwakarma, S., … Ray, B. (2019). Highly selective fluorescence ‘turn off’ sensing of picric acid and efficient cell labelling by water-soluble luminescent anthracene-bridged poly(N-vinyl pyrrolidone). The Analyst, 144(11), 3620-3634. doi:10.1039/c8an02417k

Geng, T., Zhu, Z., Zhang, W., & Wang, Y. (2017). A nitrogen-rich fluorescent conjugated microporous polymer with triazine and triphenylamine units for high iodine capture and nitro aromatic compound detection. Journal of Materials Chemistry A, 5(16), 7612-7617. doi:10.1039/c7ta00590c

Bharadwaj, V., Park, J. E., Sahoo, S. K., & Choi, H. (2019). Selective Fluorescent Turn‐Off Detection of Picric Acid Using a Novel Tripodal Supramolecular Triazole‐Trindane‐Based Receptor. ChemistrySelect, 4(36), 10895-10901. doi:10.1002/slct.201902718

Sharma, A., Kim, D., Park, J.-H., Rakshit, S., Seong, J., Jeong, G. H., … Lah, M. S. (2019). Mechanistic insight into the sensing of nitroaromatic compounds by metal-organic frameworks. Communications Chemistry, 2(1). doi:10.1038/s42004-019-0135-2

Chakravarty, S., Gogoi, B., & Sen Sarma, N. (2015). Fluorescent probes for detection of picric acid explosive: A greener approach. Journal of Luminescence, 165, 6-14. doi:10.1016/j.jlumin.2015.04.006

Bacon, J., & Adams, R. N. (1968). Anodic oxidations of aromatic amines. III. Substituted anilines in aqueous media. Journal of the American Chemical Society, 90(24), 6596-6599. doi:10.1021/ja01026a005

Wawzonek, S., & McIntyre, T. W. (1967). Electrolytic Oxidation of Aromatic Amines. Journal of The Electrochemical Society, 114(10), 1025. doi:10.1149/1.2424177

Morávková, Z., & Bober, P. (2018). Writing in a Polyaniline Film with Laser Beam and Stability of the Record: A Raman Spectroscopy Study. International Journal of Polymer Science, 2018, 1-8. doi:10.1155/2018/1797216

Silva, J. E. P. da, Temperini, M. L. A., & Torresi, S. I. C. de. (2005). Characterization of conducting polyaniline blends by Resonance Raman Spectroscopy. Journal of the Brazilian Chemical Society, 16(3a), 322-327. doi:10.1590/s0103-50532005000300005

Wudl, F., Kobayashi, M., & Heeger, A. J. (1984). Poly(isothianaphthene). The Journal of Organic Chemistry, 49(18), 3382-3384. doi:10.1021/jo00192a027

Trchová, M., Morávková, Z., Šeděnková, I., & Stejskal, J. (2012). Spectroscopy of thin polyaniline films deposited during chemical oxidation of aniline. Chemical Papers, 66(5). doi:10.2478/s11696-012-0142-6

Masilamani, V., Ghaithan, H. M., Aljaafreh, M. J., Ahmed, A., al Thagafi, R., Prasad, S., & Alsalhi, M. S. (2017). Using a Spectrofluorometer for Resonance Raman Spectra of Organic Molecules. Journal of Spectroscopy, 2017, 1-7. doi:10.1155/2017/4289830

Afzal, A. B., Akhtar, M. J., & Ahmad, M. (2010). Morphological studies of DBSA-doped polyaniline/PVC blends. Journal of Electron Microscopy, 59(5), 339-344. doi:10.1093/jmicro/dfq050

Ahmed, S. M. (2002). Preparation and degradation of highly conducting polyaniline doped with picric acid. European Polymer Journal, 38(6), 1151-1158. doi:10.1016/s0014-3057(01)00293-2

Nguyen, K. T., Li, D., Borah, P., Ma, X., Liu, Z., Zhu, L., … Zhao, Y. (2013). Photoinduced Charge Transfer within Polyaniline-Encapsulated Quantum Dots Decorated on Graphene. ACS Applied Materials & Interfaces, 5(16), 8105-8110. doi:10.1021/am402182z

Colomban, P., Folch, S., & Gruger, A. (1999). Vibrational Study of Short-Range Order and Structure of Polyaniline Bases and Salts. Macromolecules, 32(9), 3080-3092. doi:10.1021/ma981018l

Shimano, J. Y., & MacDiarmid, A. G. (2001). Polyaniline, a dynamic block copolymer: key to attaining its intrinsic conductivity? Synthetic Metals, 123(2), 251-262. doi:10.1016/s0379-6779(01)00293-4

Sambyal, P., Singh, A. P., Verma, M., Farukh, M., Singh, B. P., & Dhawan, S. K. (2014). Tailored polyaniline/barium strontium titanate/expanded graphite multiphase composite for efficient radar absorption. RSC Advances, 4(24), 12614. doi:10.1039/c3ra46479b

Hengchang, M., Zhongwei, Z., Yuanyuan, J., Lajia, Z., Chunxuan, Q., Haiying, C., … Ziqiang, L. (2015). Triphenylamine-decorated BODIPY fluorescent probe for trace detection of picric acid. RSC Advances, 5(106), 87157-87167. doi:10.1039/c5ra12154j

Bhalla, V., Gupta, A., Kumar, M., Rao, D. S. S., & Prasad, S. K. (2013). Self-Assembled Pentacenequinone Derivative for Trace Detection of Picric Acid. ACS Applied Materials & Interfaces, 5(3), 672-679. doi:10.1021/am302132h

Chen, Y.-G., Zhao, D., He, Z.-K., & Ai, X.-P. (2007). Fluorescence quenching of water-soluble conjugated polymer by metal cations and its application in sensor. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 66(2), 448-452. doi:10.1016/j.saa.2006.03.021

Sathish, V., Ramdass, A., Velayudham, M., Lu, K.-L., Thanasekaran, P., & Rajagopal, S. (2017). Development of luminescent sensors based on transition metal complexes for the detection of nitroexplosives. Dalton Transactions, 46(48), 16738-16769. doi:10.1039/c7dt02790g

Goodpaster, J. V., & McGuffin, V. L. (2001). Fluorescence Quenching as an Indirect Detection Method for Nitrated Explosives. Analytical Chemistry, 73(9), 2004-2011. doi:10.1021/ac001347n

Shanmugaraju, S., Dabadie, C., Byrne, K., Savyasachi, A. J., Umadevi, D., Schmitt, W., … Gunnlaugsson, T. (2017). A supramolecular Tröger’s base derived coordination zinc polymer for fluorescent sensing of phenolic-nitroaromatic explosives in water. Chemical Science, 8(2), 1535-1546. doi:10.1039/c6sc04367d

He, G., Zhang, G., Lü, F., & Fang, Y. (2009). Fluorescent Film Sensor for Vapor-Phase Nitroaromatic Explosives via Monolayer Assembly of Oligo(diphenylsilane) on Glass Plate Surfaces. Chemistry of Materials, 21(8), 1494-1499. doi:10.1021/cm900013f

Wenfeng, L., Hengchang, M., & Ziqiang, L. (2014). Self-assembled triphenylamine derivative for trace detection of picric acid. RSC Adv., 4(74), 39351-39358. doi:10.1039/c4ra05843g

Li, Q., Tan, X., Fu, L., Liu, Q., & Tang, W. (2015). A novel fluorescence and resonance Rayleigh scattering probe based on quantum dots for the detection of albendazole. Analytical Methods, 7(2), 614-620. doi:10.1039/c4ay02289k

D. Jawale Patil, P., D. Ingle, R., M. Wagalgave, S., S. Bhosale, R., V. Bhosale, S., P. Pawar, R., & V. Bhosale, S. (2019). A Naphthalimide-Benzothiazole Conjugate as Colorimetric and Fluorescent Sensor for Selective Trinitrophenol Detection. Chemosensors, 7(3), 38. doi:10.3390/chemosensors7030038

Madhu, P., & Sivakumar, P. (2019). Curcumin-based fluorescent chemosensor for selective and efficient detection of picric acid. Journal of Molecular Structure, 1185, 410-415. doi:10.1016/j.molstruc.2019.02.112

Gowri, A., Vignesh, R., & Kathiravan, A. (2019). Anthracene based AIEgen for picric acid detection in real water samples. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 220, 117144. doi:10.1016/j.saa.2019.117144

Yao, H., & Fukui, C. (2016). Size and morphology effects on the fluorescence properties of π-conjugated poly(p-phenylene) polyelectrolyte nanoparticles synthesized via polyion association. Journal of Materials Chemistry C, 4(14), 2945-2953. doi:10.1039/c5tc03337c

Lakshmidevi, V., Yelamaggad, C. V., & Venkataraman, A. (2018). Studies on Fluorescence Quenching of DBSA-PANI-Employing Nitroaromatics. ChemistrySelect, 3(9), 2655-2664. doi:10.1002/slct.201702992

Prabu, H. G., Talawar, M. B., Mukundan, T., & Asthana, S. N. (2011). Studies on the utilization of stripping voltammetry technique in the detection of high-energy materials. Combustion, Explosion, and Shock Waves, 47(1), 87-95. doi:10.1134/s0010508211010126

Venkatramaiah, N., Firmino, A. D. G., Almeida Paz, F. A., & Tomé, J. P. C. (2014). Fast detection of nitroaromatics using phosphonate pyrene motifs as dual chemosensors. Chem. Commun., 50(68), 9683-9686. doi:10.1039/c4cc03980g

Haram, S. K., Quinn, B. M., & Bard, A. J. (2001). Electrochemistry of CdS Nanoparticles:  A Correlation between Optical and Electrochemical Band Gaps. Journal of the American Chemical Society, 123(36), 8860-8861. doi:10.1021/ja0158206

Huang, J., & Wan, M. (1999). In situ doping polymerization of polyaniline microtubules in the presence of ?-naphthalenesulfonic acid. Journal of Polymer Science Part A: Polymer Chemistry, 37(2), 151-157. doi:10.1002/(sici)1099-0518(19990115)37:2<151::aid-pola5>3.0.co;2-r

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem