Mostrar el registro sencillo del ítem
dc.contributor.author | Venkatappa, Lakshmidevi | es_ES |
dc.contributor.author | Ture, Satish Ashok | es_ES |
dc.contributor.author | Yelamaggad, Channabasaveshwar V. | es_ES |
dc.contributor.author | Sundaram, Venkata Narayanan Naranammalpu | es_ES |
dc.contributor.author | Martínez-Máñez, Ramón | es_ES |
dc.contributor.author | Abbaraju, Venkataraman | es_ES |
dc.date.accessioned | 2021-03-12T04:31:33Z | |
dc.date.available | 2021-03-12T04:31:33Z | |
dc.date.issued | 2020-06-08 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/163763 | |
dc.description.abstract | [EN] Conducting Polymers (CPs), in recent times have contributed significantly in the detection of High Energy Materials possessing nitro functional groups through fluorescence quenching studies. Camphor sulphuric acid doped polyaniline (C-PANI) is studied with a view to obtain easily processable PANI without pi-stacking for the detection of Picric acid(PA) and p-nitro toluene(pNT) in trace levels. The quenching constant and limit of detection were found to be 2.236x10(-6) M and 6.14x10(-7) M for PA and 1.9447x10(-7) M and 3.57x10(-7) M for pNT, respectively showing a very good sensitivity in detection. Resonance Raman spectroscopy (RRS) showed the involvement of the bipolaronic and benzenoid group in the charge transfer complex formed between the conducting polymer and the analyte. The photoluminescence studies indicated a predominant PET mechanism. The electrochemical studies employing cyclic voltammetry gave higher band gap on comparison with absorption studies. The positive and negative shift in oxidation and reduction potential of polymer-analyte was observed and collaborated with the fluorescence studies to understand the possible fluorescence quenching mechanism from electrochemical approach. | es_ES |
dc.description.sponsorship | The authors greatly acknowledge and thank Prof. G. U. Kulkarni, the Director of Centre for Nano and Soft Matter (CeNS) for providing the facility to work in the centre. Specifically, one of our author, Satish Ashok Ture, expresses his thanks to M/s Premier Explosive Limited for their Financial support (H/A: 4254). We also thank the Spanish Government (RTI2018-100910-B-C41 (MCUI/AEI/FEDER, UE)) and Generalitat Valenciana (PROMETEO2018/024) for their support. Part of this work is carried out under the Gulbarga University-Central University of Karnataka MoU program. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | John Wiley & Sons | es_ES |
dc.relation.ispartof | ChemistrySelect | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Doped polyaniline | es_ES |
dc.subject | Fluorescence quenching | es_ES |
dc.subject | Picric acid | es_ES |
dc.subject | Cyclic voltammetry | es_ES |
dc.subject | Raman spectroscopy | es_ES |
dc.subject.classification | QUIMICA INORGANICA | es_ES |
dc.title | Mechanistic Insight into the Turn-Off Sensing of Nitroaromatic Compounds Employing Functionalized Polyaniline | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1002/slct.202001170 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/Premier Explosives Limited//H%2FA: 4254/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//PROMETEO%2F2018%2F024/ES/Sistemas avanzados de liberación controlada/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-100910-B-C41/ES/MATERIALES POROSOS INTELIGENTES MULTIFUNCIONALES Y DISPOSITIVOS ELECTRONICOS PARA LA LIBERACION DE FARMACOS, DETECCION DE DROGAS Y BIOMARCADORES Y COMUNICACION A NANOESCALA/ | es_ES |
dc.rights.accessRights | Cerrado | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Química - Departament de Química | es_ES |
dc.description.bibliographicCitation | Venkatappa, L.; Ture, SA.; Yelamaggad, CV.; Sundaram, VNN.; Martínez-Máñez, R.; Abbaraju, V. (2020). Mechanistic Insight into the Turn-Off Sensing of Nitroaromatic Compounds Employing Functionalized Polyaniline. ChemistrySelect. 5(21):6321-6330. https://doi.org/10.1002/slct.202001170 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1002/slct.202001170 | es_ES |
dc.description.upvformatpinicio | 6321 | es_ES |
dc.description.upvformatpfin | 6330 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 5 | es_ES |
dc.description.issue | 21 | es_ES |
dc.identifier.eissn | 2365-6549 | es_ES |
dc.relation.pasarela | S\418372 | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.contributor.funder | Premier Explosives Limited | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.description.references | Rong, M., Lin, L., Song, X., Zhao, T., Zhong, Y., Yan, J., … Chen, X. (2014). A Label-Free Fluorescence Sensing Approach for Selective and Sensitive Detection of 2,4,6-Trinitrophenol (TNP) in Aqueous Solution Using Graphitic Carbon Nitride Nanosheets. Analytical Chemistry, 87(2), 1288-1296. doi:10.1021/ac5039913 | es_ES |
dc.description.references | Shanmugaraju, S., Joshi, S. A., & Mukherjee, P. S. (2011). Fluorescence and visual sensing of nitroaromatic explosives using electron rich discrete fluorophores. Journal of Materials Chemistry, 21(25), 9130. doi:10.1039/c1jm10406c | es_ES |
dc.description.references | Rapp-Wright, H., McEneff, G., Murphy, B., Gamble, S., Morgan, R., Beardah, M., & Barron, L. (2017). Suspect screening and quantification of trace organic explosives in wastewater using solid phase extraction and liquid chromatography-high resolution accurate mass spectrometry. Journal of Hazardous Materials, 329, 11-21. doi:10.1016/j.jhazmat.2017.01.008 | es_ES |
dc.description.references | Salinas, Y., Martínez-Máñez, R., Marcos, M. D., Sancenón, F., Costero, A. M., Parra, M., & Gil, S. (2012). Optical chemosensors and reagents to detect explosives. Chem. Soc. Rev., 41(3), 1261-1296. doi:10.1039/c1cs15173h | es_ES |
dc.description.references | Martínez-Máñez, R., & Sancenón, F. (2006). Chemodosimeters and 3D inorganic functionalised hosts for the fluoro-chromogenic sensing of anions. Coordination Chemistry Reviews, 250(23-24), 3081-3093. doi:10.1016/j.ccr.2006.04.016 | es_ES |
dc.description.references | Koster, L. J. A., Mihailetchi, V. D., & Blom, P. W. M. (2006). Ultimate efficiency of polymer/fullerene bulk heterojunction solar cells. Applied Physics Letters, 88(9), 093511. doi:10.1063/1.2181635 | es_ES |
dc.description.references | ZEMAN, S. (2006). New aspects of initiation reactivities of energetic materials demonstrated on nitramines☆☆☆. Journal of Hazardous Materials, 132(2-3), 155-164. doi:10.1016/j.jhazmat.2005.07.086 | es_ES |
dc.description.references | Tang, C. W. (1986). Two‐layer organic photovoltaic cell. Applied Physics Letters, 48(2), 183-185. doi:10.1063/1.96937 | es_ES |
dc.description.references | Caygill, J. S., Davis, F., & Higson, S. P. J. (2012). Current trends in explosive detection techniques. Talanta, 88, 14-29. doi:10.1016/j.talanta.2011.11.043 | es_ES |
dc.description.references | Ramanavicius, A., Kurilcik, N., Jursenas, S., Finkelsteinas, A., & Ramanaviciene, A. (2007). Conducting polymer based fluorescence quenching as a new approach to increase the selectivity of immunosensors. Biosensors and Bioelectronics, 23(4), 499-505. doi:10.1016/j.bios.2007.06.013 | es_ES |
dc.description.references | Ramanavicius, A., Ryskevic, N., Oztekin, Y., Kausaite-Minkstimiene, A., Jursenas, S., Baniukevic, J., … Ramanaviciene, A. (2010). Immunosensor based on fluorescence quenching matrix of the conducting polymer polypyrrole. Analytical and Bioanalytical Chemistry, 398(7-8), 3105-3113. doi:10.1007/s00216-010-4265-8 | es_ES |
dc.description.references | Sun, X., Wang, Y., & Lei, Y. (2015). Fluorescence based explosive detection: from mechanisms to sensory materials. Chemical Society Reviews, 44(22), 8019-8061. doi:10.1039/c5cs00496a | es_ES |
dc.description.references | Xu, Y., Wu, X., Chen, Y., Hang, H., Tong, H., & Wang, L. (2016). Star-shaped triazatruxene derivatives for rapid fluorescence fiber-optic detection of nitroaromatic explosive vapors. RSC Adv., 6(38), 31915-31918. doi:10.1039/c6ra04553g | es_ES |
dc.description.references | Jiang, N., Li, G., Che, W., Zhu, D., Su, Z., & Bryce, M. R. (2018). Polyurethane derivatives for highly sensitive and selective fluorescence detection of 2,4,6-trinitrophenol (TNP). Journal of Materials Chemistry C, 6(42), 11287-11291. doi:10.1039/c8tc04250k | es_ES |
dc.description.references | Yang, J.-S., & Swager, T. M. (1998). Porous Shape Persistent Fluorescent Polymer Films: An Approach to TNT Sensory Materials. Journal of the American Chemical Society, 120(21), 5321-5322. doi:10.1021/ja9742996 | es_ES |
dc.description.references | Yang, J.-S., & Swager, T. M. (1998). Fluorescent Porous Polymer Films as TNT Chemosensors: Electronic and Structural Effects. Journal of the American Chemical Society, 120(46), 11864-11873. doi:10.1021/ja982293q | es_ES |
dc.description.references | Thomas, S. W., Joly, G. D., & Swager, T. M. (2007). Chemical Sensors Based on Amplifying Fluorescent Conjugated Polymers. Chemical Reviews, 107(4), 1339-1386. doi:10.1021/cr0501339 | es_ES |
dc.description.references | Nie, H., Ma, H., Zhang, M., & Zhong, Y. (2015). A novel electropolymerized fluorescent film probe for TNT based on electro-active conjugated copolymer. Talanta, 144, 1111-1115. doi:10.1016/j.talanta.2015.07.056 | es_ES |
dc.description.references | He, G., Yan, N., Yang, J., Wang, H., Ding, L., Yin, S., & Fang, Y. (2011). Pyrene-Containing Conjugated Polymer-Based Fluorescent Films for Highly Sensitive and Selective Sensing of TNT in Aqueous Medium. Macromolecules, 44(12), 4759-4766. doi:10.1021/ma200953s | es_ES |
dc.description.references | Andrew, T. L., & Swager, T. M. (2007). A Fluorescence Turn-On Mechanism to Detect High Explosives RDX and PETN. Journal of the American Chemical Society, 129(23), 7254-7255. doi:10.1021/ja071911c | es_ES |
dc.description.references | Dasary, S. S. R., Singh, A. K., Lee, K. S., Yu, H., & Ray, P. C. (2018). A miniaturized fiber-optic fluorescence analyzer for detection of Picric-acid explosive from commercial and environmental samples. Sensors and Actuators B: Chemical, 255, 1646-1654. doi:10.1016/j.snb.2017.08.175 | es_ES |
dc.description.references | Deshmukh, M. A., Gicevicius, M., Ramanaviciene, A., Shirsat, M. D., Viter, R., & Ramanavicius, A. (2017). Hybrid electrochemical/electrochromic Cu(II) ion sensor prototype based on PANI/ITO-electrode. Sensors and Actuators B: Chemical, 248, 527-535. doi:10.1016/j.snb.2017.03.167 | es_ES |
dc.description.references | MacDiarmid, A. G. (2001). «Synthetic Metals»: A Novel Role for Organic Polymers (Nobel Lecture). Angewandte Chemie International Edition, 40(14), 2581-2590. doi:10.1002/1521-3773(20010716)40:14<2581::aid-anie2581>3.0.co;2-2 | es_ES |
dc.description.references | Basavaraja, C., Pierson, R., Huh, D. S., Venkataraman, A., & Basavaraja, S. (2009). Studies on properties of polyaniline-dodecylbenzene sulfonic acid composite films synthesized using different oxidants. Macromolecular Research, 17(8), 609-615. doi:10.1007/bf03218917 | es_ES |
dc.description.references | Mikhaylov, S., Ogurtsov, N., Noskov, Y., Redon, N., Coddeville, P., Wojkiewicz, J.-L., & Pud, A. (2015). Ammonia/amine electronic gas sensors based on hybrid polyaniline–TiO2 nanocomposites. The effects of titania and the surface active doping acid. RSC Advances, 5(26), 20218-20226. doi:10.1039/c4ra16121a | es_ES |
dc.description.references | Mikhaylov, S., Ogurtsov, N. A., Redon, N., Coddeville, P., Wojkiewicz, J.-L., & Pud, A. A. (2016). The PANI-DBSA content and dispersing solvent as influencing parameters in sensing performances of TiO2/PANI-DBSA hybrid nanocomposites to ammonia. RSC Advances, 6(86), 82625-82634. doi:10.1039/c6ra12693f | es_ES |
dc.description.references | Zhang, Y., Kim, J. J., Chen, D., Tuller, H. L., & Rutledge, G. C. (2014). Electrospun Polyaniline Fibers as Highly Sensitive Room Temperature Chemiresistive Sensors for Ammonia and Nitrogen Dioxide Gases. Advanced Functional Materials, 24(25), 4005-4014. doi:10.1002/adfm.201400185 | es_ES |
dc.description.references | Nipper, M., Carr, R. S., Biedenbach, J. M., Hooten, R. L., & Miller, K. (2005). Fate and effects of picric acid and 2,6-DNT in marine environments: Toxicity of degradation products. Marine Pollution Bulletin, 50(11), 1205-1217. doi:10.1016/j.marpolbul.2005.04.019 | es_ES |
dc.description.references | Singh, R., Mitra, K., Singh, S., Senapati, S., Patel, V. K., Vishwakarma, S., … Ray, B. (2019). Highly selective fluorescence ‘turn off’ sensing of picric acid and efficient cell labelling by water-soluble luminescent anthracene-bridged poly(N-vinyl pyrrolidone). The Analyst, 144(11), 3620-3634. doi:10.1039/c8an02417k | es_ES |
dc.description.references | Geng, T., Zhu, Z., Zhang, W., & Wang, Y. (2017). A nitrogen-rich fluorescent conjugated microporous polymer with triazine and triphenylamine units for high iodine capture and nitro aromatic compound detection. Journal of Materials Chemistry A, 5(16), 7612-7617. doi:10.1039/c7ta00590c | es_ES |
dc.description.references | Bharadwaj, V., Park, J. E., Sahoo, S. K., & Choi, H. (2019). Selective Fluorescent Turn‐Off Detection of Picric Acid Using a Novel Tripodal Supramolecular Triazole‐Trindane‐Based Receptor. ChemistrySelect, 4(36), 10895-10901. doi:10.1002/slct.201902718 | es_ES |
dc.description.references | Sharma, A., Kim, D., Park, J.-H., Rakshit, S., Seong, J., Jeong, G. H., … Lah, M. S. (2019). Mechanistic insight into the sensing of nitroaromatic compounds by metal-organic frameworks. Communications Chemistry, 2(1). doi:10.1038/s42004-019-0135-2 | es_ES |
dc.description.references | Chakravarty, S., Gogoi, B., & Sen Sarma, N. (2015). Fluorescent probes for detection of picric acid explosive: A greener approach. Journal of Luminescence, 165, 6-14. doi:10.1016/j.jlumin.2015.04.006 | es_ES |
dc.description.references | Bacon, J., & Adams, R. N. (1968). Anodic oxidations of aromatic amines. III. Substituted anilines in aqueous media. Journal of the American Chemical Society, 90(24), 6596-6599. doi:10.1021/ja01026a005 | es_ES |
dc.description.references | Wawzonek, S., & McIntyre, T. W. (1967). Electrolytic Oxidation of Aromatic Amines. Journal of The Electrochemical Society, 114(10), 1025. doi:10.1149/1.2424177 | es_ES |
dc.description.references | Morávková, Z., & Bober, P. (2018). Writing in a Polyaniline Film with Laser Beam and Stability of the Record: A Raman Spectroscopy Study. International Journal of Polymer Science, 2018, 1-8. doi:10.1155/2018/1797216 | es_ES |
dc.description.references | Silva, J. E. P. da, Temperini, M. L. A., & Torresi, S. I. C. de. (2005). Characterization of conducting polyaniline blends by Resonance Raman Spectroscopy. Journal of the Brazilian Chemical Society, 16(3a), 322-327. doi:10.1590/s0103-50532005000300005 | es_ES |
dc.description.references | Wudl, F., Kobayashi, M., & Heeger, A. J. (1984). Poly(isothianaphthene). The Journal of Organic Chemistry, 49(18), 3382-3384. doi:10.1021/jo00192a027 | es_ES |
dc.description.references | Trchová, M., Morávková, Z., Šeděnková, I., & Stejskal, J. (2012). Spectroscopy of thin polyaniline films deposited during chemical oxidation of aniline. Chemical Papers, 66(5). doi:10.2478/s11696-012-0142-6 | es_ES |
dc.description.references | Masilamani, V., Ghaithan, H. M., Aljaafreh, M. J., Ahmed, A., al Thagafi, R., Prasad, S., & Alsalhi, M. S. (2017). Using a Spectrofluorometer for Resonance Raman Spectra of Organic Molecules. Journal of Spectroscopy, 2017, 1-7. doi:10.1155/2017/4289830 | es_ES |
dc.description.references | Afzal, A. B., Akhtar, M. J., & Ahmad, M. (2010). Morphological studies of DBSA-doped polyaniline/PVC blends. Journal of Electron Microscopy, 59(5), 339-344. doi:10.1093/jmicro/dfq050 | es_ES |
dc.description.references | Ahmed, S. M. (2002). Preparation and degradation of highly conducting polyaniline doped with picric acid. European Polymer Journal, 38(6), 1151-1158. doi:10.1016/s0014-3057(01)00293-2 | es_ES |
dc.description.references | Nguyen, K. T., Li, D., Borah, P., Ma, X., Liu, Z., Zhu, L., … Zhao, Y. (2013). Photoinduced Charge Transfer within Polyaniline-Encapsulated Quantum Dots Decorated on Graphene. ACS Applied Materials & Interfaces, 5(16), 8105-8110. doi:10.1021/am402182z | es_ES |
dc.description.references | Colomban, P., Folch, S., & Gruger, A. (1999). Vibrational Study of Short-Range Order and Structure of Polyaniline Bases and Salts. Macromolecules, 32(9), 3080-3092. doi:10.1021/ma981018l | es_ES |
dc.description.references | Shimano, J. Y., & MacDiarmid, A. G. (2001). Polyaniline, a dynamic block copolymer: key to attaining its intrinsic conductivity? Synthetic Metals, 123(2), 251-262. doi:10.1016/s0379-6779(01)00293-4 | es_ES |
dc.description.references | Sambyal, P., Singh, A. P., Verma, M., Farukh, M., Singh, B. P., & Dhawan, S. K. (2014). Tailored polyaniline/barium strontium titanate/expanded graphite multiphase composite for efficient radar absorption. RSC Advances, 4(24), 12614. doi:10.1039/c3ra46479b | es_ES |
dc.description.references | Hengchang, M., Zhongwei, Z., Yuanyuan, J., Lajia, Z., Chunxuan, Q., Haiying, C., … Ziqiang, L. (2015). Triphenylamine-decorated BODIPY fluorescent probe for trace detection of picric acid. RSC Advances, 5(106), 87157-87167. doi:10.1039/c5ra12154j | es_ES |
dc.description.references | Bhalla, V., Gupta, A., Kumar, M., Rao, D. S. S., & Prasad, S. K. (2013). Self-Assembled Pentacenequinone Derivative for Trace Detection of Picric Acid. ACS Applied Materials & Interfaces, 5(3), 672-679. doi:10.1021/am302132h | es_ES |
dc.description.references | Chen, Y.-G., Zhao, D., He, Z.-K., & Ai, X.-P. (2007). Fluorescence quenching of water-soluble conjugated polymer by metal cations and its application in sensor. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 66(2), 448-452. doi:10.1016/j.saa.2006.03.021 | es_ES |
dc.description.references | Sathish, V., Ramdass, A., Velayudham, M., Lu, K.-L., Thanasekaran, P., & Rajagopal, S. (2017). Development of luminescent sensors based on transition metal complexes for the detection of nitroexplosives. Dalton Transactions, 46(48), 16738-16769. doi:10.1039/c7dt02790g | es_ES |
dc.description.references | Goodpaster, J. V., & McGuffin, V. L. (2001). Fluorescence Quenching as an Indirect Detection Method for Nitrated Explosives. Analytical Chemistry, 73(9), 2004-2011. doi:10.1021/ac001347n | es_ES |
dc.description.references | Shanmugaraju, S., Dabadie, C., Byrne, K., Savyasachi, A. J., Umadevi, D., Schmitt, W., … Gunnlaugsson, T. (2017). A supramolecular Tröger’s base derived coordination zinc polymer for fluorescent sensing of phenolic-nitroaromatic explosives in water. Chemical Science, 8(2), 1535-1546. doi:10.1039/c6sc04367d | es_ES |
dc.description.references | He, G., Zhang, G., Lü, F., & Fang, Y. (2009). Fluorescent Film Sensor for Vapor-Phase Nitroaromatic Explosives via Monolayer Assembly of Oligo(diphenylsilane) on Glass Plate Surfaces. Chemistry of Materials, 21(8), 1494-1499. doi:10.1021/cm900013f | es_ES |
dc.description.references | Wenfeng, L., Hengchang, M., & Ziqiang, L. (2014). Self-assembled triphenylamine derivative for trace detection of picric acid. RSC Adv., 4(74), 39351-39358. doi:10.1039/c4ra05843g | es_ES |
dc.description.references | Li, Q., Tan, X., Fu, L., Liu, Q., & Tang, W. (2015). A novel fluorescence and resonance Rayleigh scattering probe based on quantum dots for the detection of albendazole. Analytical Methods, 7(2), 614-620. doi:10.1039/c4ay02289k | es_ES |
dc.description.references | D. Jawale Patil, P., D. Ingle, R., M. Wagalgave, S., S. Bhosale, R., V. Bhosale, S., P. Pawar, R., & V. Bhosale, S. (2019). A Naphthalimide-Benzothiazole Conjugate as Colorimetric and Fluorescent Sensor for Selective Trinitrophenol Detection. Chemosensors, 7(3), 38. doi:10.3390/chemosensors7030038 | es_ES |
dc.description.references | Madhu, P., & Sivakumar, P. (2019). Curcumin-based fluorescent chemosensor for selective and efficient detection of picric acid. Journal of Molecular Structure, 1185, 410-415. doi:10.1016/j.molstruc.2019.02.112 | es_ES |
dc.description.references | Gowri, A., Vignesh, R., & Kathiravan, A. (2019). Anthracene based AIEgen for picric acid detection in real water samples. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 220, 117144. doi:10.1016/j.saa.2019.117144 | es_ES |
dc.description.references | Yao, H., & Fukui, C. (2016). Size and morphology effects on the fluorescence properties of π-conjugated poly(p-phenylene) polyelectrolyte nanoparticles synthesized via polyion association. Journal of Materials Chemistry C, 4(14), 2945-2953. doi:10.1039/c5tc03337c | es_ES |
dc.description.references | Lakshmidevi, V., Yelamaggad, C. V., & Venkataraman, A. (2018). Studies on Fluorescence Quenching of DBSA-PANI-Employing Nitroaromatics. ChemistrySelect, 3(9), 2655-2664. doi:10.1002/slct.201702992 | es_ES |
dc.description.references | Prabu, H. G., Talawar, M. B., Mukundan, T., & Asthana, S. N. (2011). Studies on the utilization of stripping voltammetry technique in the detection of high-energy materials. Combustion, Explosion, and Shock Waves, 47(1), 87-95. doi:10.1134/s0010508211010126 | es_ES |
dc.description.references | Venkatramaiah, N., Firmino, A. D. G., Almeida Paz, F. A., & Tomé, J. P. C. (2014). Fast detection of nitroaromatics using phosphonate pyrene motifs as dual chemosensors. Chem. Commun., 50(68), 9683-9686. doi:10.1039/c4cc03980g | es_ES |
dc.description.references | Haram, S. K., Quinn, B. M., & Bard, A. J. (2001). Electrochemistry of CdS Nanoparticles: A Correlation between Optical and Electrochemical Band Gaps. Journal of the American Chemical Society, 123(36), 8860-8861. doi:10.1021/ja0158206 | es_ES |
dc.description.references | Huang, J., & Wan, M. (1999). In situ doping polymerization of polyaniline microtubules in the presence of ?-naphthalenesulfonic acid. Journal of Polymer Science Part A: Polymer Chemistry, 37(2), 151-157. doi:10.1002/(sici)1099-0518(19990115)37:2<151::aid-pola5>3.0.co;2-r | es_ES |