- -

Mechanistic Insight into the Turn-Off Sensing of Nitroaromatic Compounds Employing Functionalized Polyaniline

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Mechanistic Insight into the Turn-Off Sensing of Nitroaromatic Compounds Employing Functionalized Polyaniline

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Venkatappa, Lakshmidevi es_ES
dc.contributor.author Ture, Satish Ashok es_ES
dc.contributor.author Yelamaggad, Channabasaveshwar V. es_ES
dc.contributor.author Sundaram, Venkata Narayanan Naranammalpu es_ES
dc.contributor.author Martínez-Máñez, Ramón es_ES
dc.contributor.author Abbaraju, Venkataraman es_ES
dc.date.accessioned 2021-03-12T04:31:33Z
dc.date.available 2021-03-12T04:31:33Z
dc.date.issued 2020-06-08 es_ES
dc.identifier.uri http://hdl.handle.net/10251/163763
dc.description.abstract [EN] Conducting Polymers (CPs), in recent times have contributed significantly in the detection of High Energy Materials possessing nitro functional groups through fluorescence quenching studies. Camphor sulphuric acid doped polyaniline (C-PANI) is studied with a view to obtain easily processable PANI without pi-stacking for the detection of Picric acid(PA) and p-nitro toluene(pNT) in trace levels. The quenching constant and limit of detection were found to be 2.236x10(-6) M and 6.14x10(-7) M for PA and 1.9447x10(-7) M and 3.57x10(-7) M for pNT, respectively showing a very good sensitivity in detection. Resonance Raman spectroscopy (RRS) showed the involvement of the bipolaronic and benzenoid group in the charge transfer complex formed between the conducting polymer and the analyte. The photoluminescence studies indicated a predominant PET mechanism. The electrochemical studies employing cyclic voltammetry gave higher band gap on comparison with absorption studies. The positive and negative shift in oxidation and reduction potential of polymer-analyte was observed and collaborated with the fluorescence studies to understand the possible fluorescence quenching mechanism from electrochemical approach. es_ES
dc.description.sponsorship The authors greatly acknowledge and thank Prof. G. U. Kulkarni, the Director of Centre for Nano and Soft Matter (CeNS) for providing the facility to work in the centre. Specifically, one of our author, Satish Ashok Ture, expresses his thanks to M/s Premier Explosive Limited for their Financial support (H/A: 4254). We also thank the Spanish Government (RTI2018-100910-B-C41 (MCUI/AEI/FEDER, UE)) and Generalitat Valenciana (PROMETEO2018/024) for their support. Part of this work is carried out under the Gulbarga University-Central University of Karnataka MoU program. es_ES
dc.language Inglés es_ES
dc.publisher John Wiley & Sons es_ES
dc.relation.ispartof ChemistrySelect es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Doped polyaniline es_ES
dc.subject Fluorescence quenching es_ES
dc.subject Picric acid es_ES
dc.subject Cyclic voltammetry es_ES
dc.subject Raman spectroscopy es_ES
dc.subject.classification QUIMICA INORGANICA es_ES
dc.title Mechanistic Insight into the Turn-Off Sensing of Nitroaromatic Compounds Employing Functionalized Polyaniline es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1002/slct.202001170 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/Premier Explosives Limited//H%2FA: 4254/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEO%2F2018%2F024/ES/Sistemas avanzados de liberación controlada/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-100910-B-C41/ES/MATERIALES POROSOS INTELIGENTES MULTIFUNCIONALES Y DISPOSITIVOS ELECTRONICOS PARA LA LIBERACION DE FARMACOS, DETECCION DE DROGAS Y BIOMARCADORES Y COMUNICACION A NANOESCALA/ es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Química - Departament de Química es_ES
dc.description.bibliographicCitation Venkatappa, L.; Ture, SA.; Yelamaggad, CV.; Sundaram, VNN.; Martínez-Máñez, R.; Abbaraju, V. (2020). Mechanistic Insight into the Turn-Off Sensing of Nitroaromatic Compounds Employing Functionalized Polyaniline. ChemistrySelect. 5(21):6321-6330. https://doi.org/10.1002/slct.202001170 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1002/slct.202001170 es_ES
dc.description.upvformatpinicio 6321 es_ES
dc.description.upvformatpfin 6330 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 5 es_ES
dc.description.issue 21 es_ES
dc.identifier.eissn 2365-6549 es_ES
dc.relation.pasarela S\418372 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Premier Explosives Limited es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.description.references Rong, M., Lin, L., Song, X., Zhao, T., Zhong, Y., Yan, J., … Chen, X. (2014). A Label-Free Fluorescence Sensing Approach for Selective and Sensitive Detection of 2,4,6-Trinitrophenol (TNP) in Aqueous Solution Using Graphitic Carbon Nitride Nanosheets. Analytical Chemistry, 87(2), 1288-1296. doi:10.1021/ac5039913 es_ES
dc.description.references Shanmugaraju, S., Joshi, S. A., & Mukherjee, P. S. (2011). Fluorescence and visual sensing of nitroaromatic explosives using electron rich discrete fluorophores. Journal of Materials Chemistry, 21(25), 9130. doi:10.1039/c1jm10406c es_ES
dc.description.references Rapp-Wright, H., McEneff, G., Murphy, B., Gamble, S., Morgan, R., Beardah, M., & Barron, L. (2017). Suspect screening and quantification of trace organic explosives in wastewater using solid phase extraction and liquid chromatography-high resolution accurate mass spectrometry. Journal of Hazardous Materials, 329, 11-21. doi:10.1016/j.jhazmat.2017.01.008 es_ES
dc.description.references Salinas, Y., Martínez-Máñez, R., Marcos, M. D., Sancenón, F., Costero, A. M., Parra, M., & Gil, S. (2012). Optical chemosensors and reagents to detect explosives. Chem. Soc. Rev., 41(3), 1261-1296. doi:10.1039/c1cs15173h es_ES
dc.description.references Martínez-Máñez, R., & Sancenón, F. (2006). Chemodosimeters and 3D inorganic functionalised hosts for the fluoro-chromogenic sensing of anions. Coordination Chemistry Reviews, 250(23-24), 3081-3093. doi:10.1016/j.ccr.2006.04.016 es_ES
dc.description.references Koster, L. J. A., Mihailetchi, V. D., & Blom, P. W. M. (2006). Ultimate efficiency of polymer/fullerene bulk heterojunction solar cells. Applied Physics Letters, 88(9), 093511. doi:10.1063/1.2181635 es_ES
dc.description.references ZEMAN, S. (2006). New aspects of initiation reactivities of energetic materials demonstrated on nitramines☆☆☆. Journal of Hazardous Materials, 132(2-3), 155-164. doi:10.1016/j.jhazmat.2005.07.086 es_ES
dc.description.references Tang, C. W. (1986). Two‐layer organic photovoltaic cell. Applied Physics Letters, 48(2), 183-185. doi:10.1063/1.96937 es_ES
dc.description.references Caygill, J. S., Davis, F., & Higson, S. P. J. (2012). Current trends in explosive detection techniques. Talanta, 88, 14-29. doi:10.1016/j.talanta.2011.11.043 es_ES
dc.description.references Ramanavicius, A., Kurilcik, N., Jursenas, S., Finkelsteinas, A., & Ramanaviciene, A. (2007). Conducting polymer based fluorescence quenching as a new approach to increase the selectivity of immunosensors. Biosensors and Bioelectronics, 23(4), 499-505. doi:10.1016/j.bios.2007.06.013 es_ES
dc.description.references Ramanavicius, A., Ryskevic, N., Oztekin, Y., Kausaite-Minkstimiene, A., Jursenas, S., Baniukevic, J., … Ramanaviciene, A. (2010). Immunosensor based on fluorescence quenching matrix of the conducting polymer polypyrrole. Analytical and Bioanalytical Chemistry, 398(7-8), 3105-3113. doi:10.1007/s00216-010-4265-8 es_ES
dc.description.references Sun, X., Wang, Y., & Lei, Y. (2015). Fluorescence based explosive detection: from mechanisms to sensory materials. Chemical Society Reviews, 44(22), 8019-8061. doi:10.1039/c5cs00496a es_ES
dc.description.references Xu, Y., Wu, X., Chen, Y., Hang, H., Tong, H., & Wang, L. (2016). Star-shaped triazatruxene derivatives for rapid fluorescence fiber-optic detection of nitroaromatic explosive vapors. RSC Adv., 6(38), 31915-31918. doi:10.1039/c6ra04553g es_ES
dc.description.references Jiang, N., Li, G., Che, W., Zhu, D., Su, Z., & Bryce, M. R. (2018). Polyurethane derivatives for highly sensitive and selective fluorescence detection of 2,4,6-trinitrophenol (TNP). Journal of Materials Chemistry C, 6(42), 11287-11291. doi:10.1039/c8tc04250k es_ES
dc.description.references Yang, J.-S., & Swager, T. M. (1998). Porous Shape Persistent Fluorescent Polymer Films:  An Approach to TNT Sensory Materials. Journal of the American Chemical Society, 120(21), 5321-5322. doi:10.1021/ja9742996 es_ES
dc.description.references Yang, J.-S., & Swager, T. M. (1998). Fluorescent Porous Polymer Films as TNT Chemosensors:  Electronic and Structural Effects. Journal of the American Chemical Society, 120(46), 11864-11873. doi:10.1021/ja982293q es_ES
dc.description.references Thomas, S. W., Joly, G. D., & Swager, T. M. (2007). Chemical Sensors Based on Amplifying Fluorescent Conjugated Polymers. Chemical Reviews, 107(4), 1339-1386. doi:10.1021/cr0501339 es_ES
dc.description.references Nie, H., Ma, H., Zhang, M., & Zhong, Y. (2015). A novel electropolymerized fluorescent film probe for TNT based on electro-active conjugated copolymer. Talanta, 144, 1111-1115. doi:10.1016/j.talanta.2015.07.056 es_ES
dc.description.references He, G., Yan, N., Yang, J., Wang, H., Ding, L., Yin, S., & Fang, Y. (2011). Pyrene-Containing Conjugated Polymer-Based Fluorescent Films for Highly Sensitive and Selective Sensing of TNT in Aqueous Medium. Macromolecules, 44(12), 4759-4766. doi:10.1021/ma200953s es_ES
dc.description.references Andrew, T. L., & Swager, T. M. (2007). A Fluorescence Turn-On Mechanism to Detect High Explosives RDX and PETN. Journal of the American Chemical Society, 129(23), 7254-7255. doi:10.1021/ja071911c es_ES
dc.description.references Dasary, S. S. R., Singh, A. K., Lee, K. S., Yu, H., & Ray, P. C. (2018). A miniaturized fiber-optic fluorescence analyzer for detection of Picric-acid explosive from commercial and environmental samples. Sensors and Actuators B: Chemical, 255, 1646-1654. doi:10.1016/j.snb.2017.08.175 es_ES
dc.description.references Deshmukh, M. A., Gicevicius, M., Ramanaviciene, A., Shirsat, M. D., Viter, R., & Ramanavicius, A. (2017). Hybrid electrochemical/electrochromic Cu(II) ion sensor prototype based on PANI/ITO-electrode. Sensors and Actuators B: Chemical, 248, 527-535. doi:10.1016/j.snb.2017.03.167 es_ES
dc.description.references MacDiarmid, A. G. (2001). «Synthetic Metals»: A Novel Role for Organic Polymers (Nobel Lecture). Angewandte Chemie International Edition, 40(14), 2581-2590. doi:10.1002/1521-3773(20010716)40:14<2581::aid-anie2581>3.0.co;2-2 es_ES
dc.description.references Basavaraja, C., Pierson, R., Huh, D. S., Venkataraman, A., & Basavaraja, S. (2009). Studies on properties of polyaniline-dodecylbenzene sulfonic acid composite films synthesized using different oxidants. Macromolecular Research, 17(8), 609-615. doi:10.1007/bf03218917 es_ES
dc.description.references Mikhaylov, S., Ogurtsov, N., Noskov, Y., Redon, N., Coddeville, P., Wojkiewicz, J.-L., & Pud, A. (2015). Ammonia/amine electronic gas sensors based on hybrid polyaniline–TiO2 nanocomposites. The effects of titania and the surface active doping acid. RSC Advances, 5(26), 20218-20226. doi:10.1039/c4ra16121a es_ES
dc.description.references Mikhaylov, S., Ogurtsov, N. A., Redon, N., Coddeville, P., Wojkiewicz, J.-L., & Pud, A. A. (2016). The PANI-DBSA content and dispersing solvent as influencing parameters in sensing performances of TiO2/PANI-DBSA hybrid nanocomposites to ammonia. RSC Advances, 6(86), 82625-82634. doi:10.1039/c6ra12693f es_ES
dc.description.references Zhang, Y., Kim, J. J., Chen, D., Tuller, H. L., & Rutledge, G. C. (2014). Electrospun Polyaniline Fibers as Highly Sensitive Room Temperature Chemiresistive Sensors for Ammonia and Nitrogen Dioxide Gases. Advanced Functional Materials, 24(25), 4005-4014. doi:10.1002/adfm.201400185 es_ES
dc.description.references Nipper, M., Carr, R. S., Biedenbach, J. M., Hooten, R. L., & Miller, K. (2005). Fate and effects of picric acid and 2,6-DNT in marine environments: Toxicity of degradation products. Marine Pollution Bulletin, 50(11), 1205-1217. doi:10.1016/j.marpolbul.2005.04.019 es_ES
dc.description.references Singh, R., Mitra, K., Singh, S., Senapati, S., Patel, V. K., Vishwakarma, S., … Ray, B. (2019). Highly selective fluorescence ‘turn off’ sensing of picric acid and efficient cell labelling by water-soluble luminescent anthracene-bridged poly(N-vinyl pyrrolidone). The Analyst, 144(11), 3620-3634. doi:10.1039/c8an02417k es_ES
dc.description.references Geng, T., Zhu, Z., Zhang, W., & Wang, Y. (2017). A nitrogen-rich fluorescent conjugated microporous polymer with triazine and triphenylamine units for high iodine capture and nitro aromatic compound detection. Journal of Materials Chemistry A, 5(16), 7612-7617. doi:10.1039/c7ta00590c es_ES
dc.description.references Bharadwaj, V., Park, J. E., Sahoo, S. K., & Choi, H. (2019). Selective Fluorescent Turn‐Off Detection of Picric Acid Using a Novel Tripodal Supramolecular Triazole‐Trindane‐Based Receptor. ChemistrySelect, 4(36), 10895-10901. doi:10.1002/slct.201902718 es_ES
dc.description.references Sharma, A., Kim, D., Park, J.-H., Rakshit, S., Seong, J., Jeong, G. H., … Lah, M. S. (2019). Mechanistic insight into the sensing of nitroaromatic compounds by metal-organic frameworks. Communications Chemistry, 2(1). doi:10.1038/s42004-019-0135-2 es_ES
dc.description.references Chakravarty, S., Gogoi, B., & Sen Sarma, N. (2015). Fluorescent probes for detection of picric acid explosive: A greener approach. Journal of Luminescence, 165, 6-14. doi:10.1016/j.jlumin.2015.04.006 es_ES
dc.description.references Bacon, J., & Adams, R. N. (1968). Anodic oxidations of aromatic amines. III. Substituted anilines in aqueous media. Journal of the American Chemical Society, 90(24), 6596-6599. doi:10.1021/ja01026a005 es_ES
dc.description.references Wawzonek, S., & McIntyre, T. W. (1967). Electrolytic Oxidation of Aromatic Amines. Journal of The Electrochemical Society, 114(10), 1025. doi:10.1149/1.2424177 es_ES
dc.description.references Morávková, Z., & Bober, P. (2018). Writing in a Polyaniline Film with Laser Beam and Stability of the Record: A Raman Spectroscopy Study. International Journal of Polymer Science, 2018, 1-8. doi:10.1155/2018/1797216 es_ES
dc.description.references Silva, J. E. P. da, Temperini, M. L. A., & Torresi, S. I. C. de. (2005). Characterization of conducting polyaniline blends by Resonance Raman Spectroscopy. Journal of the Brazilian Chemical Society, 16(3a), 322-327. doi:10.1590/s0103-50532005000300005 es_ES
dc.description.references Wudl, F., Kobayashi, M., & Heeger, A. J. (1984). Poly(isothianaphthene). The Journal of Organic Chemistry, 49(18), 3382-3384. doi:10.1021/jo00192a027 es_ES
dc.description.references Trchová, M., Morávková, Z., Šeděnková, I., & Stejskal, J. (2012). Spectroscopy of thin polyaniline films deposited during chemical oxidation of aniline. Chemical Papers, 66(5). doi:10.2478/s11696-012-0142-6 es_ES
dc.description.references Masilamani, V., Ghaithan, H. M., Aljaafreh, M. J., Ahmed, A., al Thagafi, R., Prasad, S., & Alsalhi, M. S. (2017). Using a Spectrofluorometer for Resonance Raman Spectra of Organic Molecules. Journal of Spectroscopy, 2017, 1-7. doi:10.1155/2017/4289830 es_ES
dc.description.references Afzal, A. B., Akhtar, M. J., & Ahmad, M. (2010). Morphological studies of DBSA-doped polyaniline/PVC blends. Journal of Electron Microscopy, 59(5), 339-344. doi:10.1093/jmicro/dfq050 es_ES
dc.description.references Ahmed, S. M. (2002). Preparation and degradation of highly conducting polyaniline doped with picric acid. European Polymer Journal, 38(6), 1151-1158. doi:10.1016/s0014-3057(01)00293-2 es_ES
dc.description.references Nguyen, K. T., Li, D., Borah, P., Ma, X., Liu, Z., Zhu, L., … Zhao, Y. (2013). Photoinduced Charge Transfer within Polyaniline-Encapsulated Quantum Dots Decorated on Graphene. ACS Applied Materials & Interfaces, 5(16), 8105-8110. doi:10.1021/am402182z es_ES
dc.description.references Colomban, P., Folch, S., & Gruger, A. (1999). Vibrational Study of Short-Range Order and Structure of Polyaniline Bases and Salts. Macromolecules, 32(9), 3080-3092. doi:10.1021/ma981018l es_ES
dc.description.references Shimano, J. Y., & MacDiarmid, A. G. (2001). Polyaniline, a dynamic block copolymer: key to attaining its intrinsic conductivity? Synthetic Metals, 123(2), 251-262. doi:10.1016/s0379-6779(01)00293-4 es_ES
dc.description.references Sambyal, P., Singh, A. P., Verma, M., Farukh, M., Singh, B. P., & Dhawan, S. K. (2014). Tailored polyaniline/barium strontium titanate/expanded graphite multiphase composite for efficient radar absorption. RSC Advances, 4(24), 12614. doi:10.1039/c3ra46479b es_ES
dc.description.references Hengchang, M., Zhongwei, Z., Yuanyuan, J., Lajia, Z., Chunxuan, Q., Haiying, C., … Ziqiang, L. (2015). Triphenylamine-decorated BODIPY fluorescent probe for trace detection of picric acid. RSC Advances, 5(106), 87157-87167. doi:10.1039/c5ra12154j es_ES
dc.description.references Bhalla, V., Gupta, A., Kumar, M., Rao, D. S. S., & Prasad, S. K. (2013). Self-Assembled Pentacenequinone Derivative for Trace Detection of Picric Acid. ACS Applied Materials & Interfaces, 5(3), 672-679. doi:10.1021/am302132h es_ES
dc.description.references Chen, Y.-G., Zhao, D., He, Z.-K., & Ai, X.-P. (2007). Fluorescence quenching of water-soluble conjugated polymer by metal cations and its application in sensor. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 66(2), 448-452. doi:10.1016/j.saa.2006.03.021 es_ES
dc.description.references Sathish, V., Ramdass, A., Velayudham, M., Lu, K.-L., Thanasekaran, P., & Rajagopal, S. (2017). Development of luminescent sensors based on transition metal complexes for the detection of nitroexplosives. Dalton Transactions, 46(48), 16738-16769. doi:10.1039/c7dt02790g es_ES
dc.description.references Goodpaster, J. V., & McGuffin, V. L. (2001). Fluorescence Quenching as an Indirect Detection Method for Nitrated Explosives. Analytical Chemistry, 73(9), 2004-2011. doi:10.1021/ac001347n es_ES
dc.description.references Shanmugaraju, S., Dabadie, C., Byrne, K., Savyasachi, A. J., Umadevi, D., Schmitt, W., … Gunnlaugsson, T. (2017). A supramolecular Tröger’s base derived coordination zinc polymer for fluorescent sensing of phenolic-nitroaromatic explosives in water. Chemical Science, 8(2), 1535-1546. doi:10.1039/c6sc04367d es_ES
dc.description.references He, G., Zhang, G., Lü, F., & Fang, Y. (2009). Fluorescent Film Sensor for Vapor-Phase Nitroaromatic Explosives via Monolayer Assembly of Oligo(diphenylsilane) on Glass Plate Surfaces. Chemistry of Materials, 21(8), 1494-1499. doi:10.1021/cm900013f es_ES
dc.description.references Wenfeng, L., Hengchang, M., & Ziqiang, L. (2014). Self-assembled triphenylamine derivative for trace detection of picric acid. RSC Adv., 4(74), 39351-39358. doi:10.1039/c4ra05843g es_ES
dc.description.references Li, Q., Tan, X., Fu, L., Liu, Q., & Tang, W. (2015). A novel fluorescence and resonance Rayleigh scattering probe based on quantum dots for the detection of albendazole. Analytical Methods, 7(2), 614-620. doi:10.1039/c4ay02289k es_ES
dc.description.references D. Jawale Patil, P., D. Ingle, R., M. Wagalgave, S., S. Bhosale, R., V. Bhosale, S., P. Pawar, R., & V. Bhosale, S. (2019). A Naphthalimide-Benzothiazole Conjugate as Colorimetric and Fluorescent Sensor for Selective Trinitrophenol Detection. Chemosensors, 7(3), 38. doi:10.3390/chemosensors7030038 es_ES
dc.description.references Madhu, P., & Sivakumar, P. (2019). Curcumin-based fluorescent chemosensor for selective and efficient detection of picric acid. Journal of Molecular Structure, 1185, 410-415. doi:10.1016/j.molstruc.2019.02.112 es_ES
dc.description.references Gowri, A., Vignesh, R., & Kathiravan, A. (2019). Anthracene based AIEgen for picric acid detection in real water samples. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 220, 117144. doi:10.1016/j.saa.2019.117144 es_ES
dc.description.references Yao, H., & Fukui, C. (2016). Size and morphology effects on the fluorescence properties of π-conjugated poly(p-phenylene) polyelectrolyte nanoparticles synthesized via polyion association. Journal of Materials Chemistry C, 4(14), 2945-2953. doi:10.1039/c5tc03337c es_ES
dc.description.references Lakshmidevi, V., Yelamaggad, C. V., & Venkataraman, A. (2018). Studies on Fluorescence Quenching of DBSA-PANI-Employing Nitroaromatics. ChemistrySelect, 3(9), 2655-2664. doi:10.1002/slct.201702992 es_ES
dc.description.references Prabu, H. G., Talawar, M. B., Mukundan, T., & Asthana, S. N. (2011). Studies on the utilization of stripping voltammetry technique in the detection of high-energy materials. Combustion, Explosion, and Shock Waves, 47(1), 87-95. doi:10.1134/s0010508211010126 es_ES
dc.description.references Venkatramaiah, N., Firmino, A. D. G., Almeida Paz, F. A., & Tomé, J. P. C. (2014). Fast detection of nitroaromatics using phosphonate pyrene motifs as dual chemosensors. Chem. Commun., 50(68), 9683-9686. doi:10.1039/c4cc03980g es_ES
dc.description.references Haram, S. K., Quinn, B. M., & Bard, A. J. (2001). Electrochemistry of CdS Nanoparticles:  A Correlation between Optical and Electrochemical Band Gaps. Journal of the American Chemical Society, 123(36), 8860-8861. doi:10.1021/ja0158206 es_ES
dc.description.references Huang, J., & Wan, M. (1999). In situ doping polymerization of polyaniline microtubules in the presence of ?-naphthalenesulfonic acid. Journal of Polymer Science Part A: Polymer Chemistry, 37(2), 151-157. doi:10.1002/(sici)1099-0518(19990115)37:2<151::aid-pola5>3.0.co;2-r es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem