- -

Compression failure characterization of cancellous bone combining experimental testing, digital image correlation and finite element modeling

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Compression failure characterization of cancellous bone combining experimental testing, digital image correlation and finite element modeling

Mostrar el registro completo del ítem

Belda, R.; Palomar-Toledano, M.; Peris Serra, JL.; Vercher Martínez, A.; Giner Maravilla, E. (2020). Compression failure characterization of cancellous bone combining experimental testing, digital image correlation and finite element modeling. International Journal of Mechanical Sciences. 165:1-12. https://doi.org/10.1016/j.ijmecsci.2019.105213

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/164216

Ficheros en el ítem

Metadatos del ítem

Título: Compression failure characterization of cancellous bone combining experimental testing, digital image correlation and finite element modeling
Autor: Belda, R. Palomar-Toledano, Marta PERIS SERRA, JOSE LUIS Vercher Martínez, Ana Giner Maravilla, Eugenio
Entidad UPV: Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials
Fecha difusión:
Resumen:
[EN] Cancellous bone yield strain has been reported in the literature to be relatively constant and independent from microstructure and apparent density, while fracture strain shows higher scattering. The objective of this ...[+]
Palabras clave: Compression fracture characterization , Cancellous bone , Digital image correlation , Micro-FE
Derechos de uso: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Fuente:
International Journal of Mechanical Sciences. (issn: 0020-7403 )
DOI: 10.1016/j.ijmecsci.2019.105213
Editorial:
Elsevier
Versión del editor: https://doi.org/10.1016/j.ijmecsci.2019.105213
Código del Proyecto:
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/DPI2017-89197-C2-2-R/ES/TALADRADO DE COMPONENTES HIBRIDOS CFRPS%2FTI Y TOLERANCIA AL DAÑO DEBIDO A MECANIZADO DURANTE EL COMPORTAMIENTO EN SERVICIO DE UNIONES ESTRUCTURALES AERONAUTICAS/
info:eu-repo/grantAgreement/GVA//PROMETEO%2F2016%2F007/ES/Modelado numérico avanzado en ingeniería mecánica/
info:eu-repo/grantAgreement/MINECO//DPI2013-46641-R/ES/DESARROLLO DE MODELOS MICROESTRUCTURALES DE TEJIDO OSEO Y APLICACION A PROCEDIMIENTOS DE EVALUACION DEL RIESGO DE FRACTURA/
Agradecimientos:
This work was supported by the Spanish Ministerio de Ciencia, Innovacion y Universidades grant numbers DPI2013-46641-R and DPI2017-89197-C2-2-R and the Generalitat Valenciana (Programme PROMETEO 2016/007). The micro-CT ...[+]
Tipo: Artículo

References

Gold, D. T. (2001). The Nonskeletal Consequences of Osteoporotic Fractures. Rheumatic Disease Clinics of North America, 27(1), 255-262. doi:10.1016/s0889-857x(05)70197-6

Keaveny, T. M., Morgan, E. F., Niebur, G. L., & Yeh, O. C. (2001). Biomechanics of Trabecular Bone. Annual Review of Biomedical Engineering, 3(1), 307-333. doi:10.1146/annurev.bioeng.3.1.307

Rho, J.-Y., Kuhn-Spearing, L., & Zioupos, P. (1998). Mechanical properties and the hierarchical structure of bone. Medical Engineering & Physics, 20(2), 92-102. doi:10.1016/s1350-4533(98)00007-1 [+]
Gold, D. T. (2001). The Nonskeletal Consequences of Osteoporotic Fractures. Rheumatic Disease Clinics of North America, 27(1), 255-262. doi:10.1016/s0889-857x(05)70197-6

Keaveny, T. M., Morgan, E. F., Niebur, G. L., & Yeh, O. C. (2001). Biomechanics of Trabecular Bone. Annual Review of Biomedical Engineering, 3(1), 307-333. doi:10.1146/annurev.bioeng.3.1.307

Rho, J.-Y., Kuhn-Spearing, L., & Zioupos, P. (1998). Mechanical properties and the hierarchical structure of bone. Medical Engineering & Physics, 20(2), 92-102. doi:10.1016/s1350-4533(98)00007-1

Currey, J. D. (2011). The structure and mechanics of bone. Journal of Materials Science, 47(1), 41-54. doi:10.1007/s10853-011-5914-9

Gupta, H. S., & Zioupos, P. (2008). Fracture of bone tissue: The ‘hows’ and the ‘whys’. Medical Engineering & Physics, 30(10), 1209-1226. doi:10.1016/j.medengphy.2008.09.007

Nagaraja, S., Couse, T. L., & Guldberg, R. E. (2005). Trabecular bone microdamage and microstructural stresses under uniaxial compression. Journal of Biomechanics, 38(4), 707-716. doi:10.1016/j.jbiomech.2004.05.013

Garcia, D., Zysset, P. K., Charlebois, M., & Curnier, A. (2008). A three-dimensional elastic plastic damage constitutive law for bone tissue. Biomechanics and Modeling in Mechanobiology, 8(2), 149-165. doi:10.1007/s10237-008-0125-2

Ridha, H., & Thurner, P. J. (2013). Finite element prediction with experimental validation of damage distribution in single trabeculae during three-point bending tests. Journal of the Mechanical Behavior of Biomedical Materials, 27, 94-106. doi:10.1016/j.jmbbm.2013.07.005

Hambli, R. (2012). A quasi-brittle continuum damage finite element model of the human proximal femur based on element deletion. Medical & Biological Engineering & Computing, 51(1-2), 219-231. doi:10.1007/s11517-012-0986-5

Fan, R., Gong, H., Zhang, X., Liu, J., Jia, Z., & Zhu, D. (2016). Modeling the Mechanical Consequences of Age-Related Trabecular Bone Loss by XFEM Simulation. Computational and Mathematical Methods in Medicine, 2016, 1-12. doi:10.1155/2016/3495152

Vellwock, A. E., Vergani, L., & Libonati, F. (2018). A multiscale XFEM approach to investigate the fracture behavior of bio-inspired composite materials. Composites Part B: Engineering, 141, 258-264. doi:10.1016/j.compositesb.2017.12.062

Hambli, R. (2010). Multiscale prediction of crack density and crack length accumulation in trabecular bone based on neural networks and finite element simulation. International Journal for Numerical Methods in Biomedical Engineering, 27(4), 461-475. doi:10.1002/cnm.1413

Hambli, R. (2011). Apparent damage accumulation in cancellous bone using neural networks. Journal of the Mechanical Behavior of Biomedical Materials, 4(6), 868-878. doi:10.1016/j.jmbbm.2011.03.002

Lemaitre, J. (1985). A Continuous Damage Mechanics Model for Ductile Fracture. Journal of Engineering Materials and Technology, 107(1), 83-89. doi:10.1115/1.3225775

Turner, C. H., & Burr, D. B. (1993). Basic biomechanical measurements of bone: A tutorial. Bone, 14(4), 595-608. doi:10.1016/8756-3282(93)90081-k

Bay, B. K. (1995). Texture correlation: A method for the measurement of detailed strain distributions within trabecular bone. Journal of Orthopaedic Research, 13(2), 258-267. doi:10.1002/jor.1100130214

Peters, W. H., & Ranson, W. F. (1982). Digital Imaging Techniques In Experimental Stress Analysis. Optical Engineering, 21(3). doi:10.1117/12.7972925

Sutton, M., Wolters, W., Peters, W., Ranson, W., & McNeill, S. (1983). Determination of displacements using an improved digital correlation method. Image and Vision Computing, 1(3), 133-139. doi:10.1016/0262-8856(83)90064-1

Pan, B., Qian, K., Xie, H., & Asundi, A. (2009). Two-dimensional digital image correlation for in-plane displacement and strain measurement: a review. Measurement Science and Technology, 20(6), 062001. doi:10.1088/0957-0233/20/6/062001

Khoo, S.-W., Karuppanan, S., & Tan, C.-S. (2016). A Review of Surface Deformation and Strain Measurement Using Two-Dimensional Digital Image Correlation. Metrology and Measurement Systems, 23(3), 461-480. doi:10.1515/mms-2016-0028

Palanca, M., Tozzi, G., & Cristofolini, L. (2015). The use of digital image correlation in the biomechanical area: a review. International Biomechanics, 3(1), 1-21. doi:10.1080/23335432.2015.1117395

Grassi, L., & Isaksson, H. (2015). Extracting accurate strain measurements in bone mechanics: A critical review of current methods. Journal of the Mechanical Behavior of Biomedical Materials, 50, 43-54. doi:10.1016/j.jmbbm.2015.06.006

Bayraktar, H. H., Morgan, E. F., Niebur, G. L., Morris, G. E., Wong, E. K., & Keaveny, T. M. (2004). Comparison of the elastic and yield properties of human femoral trabecular and cortical bone tissue. Journal of Biomechanics, 37(1), 27-35. doi:10.1016/s0021-9290(03)00257-4

Carretta, R., Stüssi, E., Müller, R., & Lorenzetti, S. (2013). Within subject heterogeneity in tissue-level post-yield mechanical and material properties in human trabecular bone. Journal of the Mechanical Behavior of Biomedical Materials, 24, 64-73. doi:10.1016/j.jmbbm.2013.04.014

Linde, F., & Sørensen, H. C. F. (1993). The effect of different storage methods on the mechanical properties of trabecular bone. Journal of Biomechanics, 26(10), 1249-1252. doi:10.1016/0021-9290(93)90072-m

Linde, F., & Hvid, I. (1987). Stiffness behaviour of trabecular bone specimens. Journal of Biomechanics, 20(1), 83-89. doi:10.1016/0021-9290(87)90270-3

Keaveny, T. M., Borchers, R. E., Gibson, L. J., & Hayes, W. C. (1993). Theoretical analysis of the experimental artifact in trabecular bone compressive modulus. Journal of Biomechanics, 26(4-5), 599-607. doi:10.1016/0021-9290(93)90021-6

Keaveny, T. M., Guo, X. E., Wachtel, E. F., McMahon, T. A., & Hayes, W. C. (1994). Trabecular bone exhibits fully linear elastic behavior and yields at low strains. Journal of Biomechanics, 27(9), 1127-1136. doi:10.1016/0021-9290(94)90053-1

Keaveny, T. M., Pinilla, T. P., Crawford, R. P., Kopperdahl, D. L., & Lou, A. (1997). Systematic and random errors in compression testing of trabecular bone. Journal of Orthopaedic Research, 15(1), 101-110. doi:10.1002/jor.1100150115

Correlated Solutions. VIC-2d v6 reference manual. 2016. http://www.correlatedsolutions.com/supportcontent/Vic-2D-v6-Manual.pdf.

Whitehouse, W. J. (1974). The quantitative morphology of anisotropic trabecular bone. Journal of Microscopy, 101(2), 153-168. doi:10.1111/j.1365-2818.1974.tb03878.x

Kabel, J., van Rietbergen, B., Dalstra, M., Odgaard, A., & Huiskes, R. (1999). The role of an effective isotropic tissue modulus in the elastic properties of cancellous bone. Journal of Biomechanics, 32(7), 673-680. doi:10.1016/s0021-9290(99)00045-7

Nalla, R. K., Kinney, J. H., & Ritchie, R. O. (2003). Mechanistic fracture criteria for the failure of human cortical bone. Nature Materials, 2(3), 164-168. doi:10.1038/nmat832

Taylor, D. (2003). A crack growth model for the simulation of fatigue in bone. International Journal of Fatigue, 25(5), 387-395. doi:10.1016/s0142-1123(02)00165-2

Burr, D. B., & Stafford, T. (1990). Validity of the Bulk-Staining Technique to Separate Artifactual From In Vivo Bone Microdamage. Clinical Orthopaedics and Related Research, 260, 305-308. doi:10.1097/00003086-199011000-00047

Keaveny, T. M., & Hayes, W. C. (1993). A 20-Year Perspective on the Mechanical Properties of Trabecular Bone. Journal of Biomechanical Engineering, 115(4B), 534-542. doi:10.1115/1.2895536

Wolfram, U., Wilke, H.-J., & Zysset, P. K. (2011). Damage accumulation in vertebral trabecular bone depends on loading mode and direction. Journal of Biomechanics, 44(6), 1164-1169. doi:10.1016/j.jbiomech.2011.01.018

Kopperdahl, D. L., & Keaveny, T. M. (1998). Yield strain behavior of trabecular bone. Journal of Biomechanics, 31(7), 601-608. doi:10.1016/s0021-9290(98)00057-8

Hara, T., Tanck, E., Homminga, J., & Huiskes, R. (2002). The influence of microcomputed tomography threshold variations on the assessment of structural and mechanical trabecular bone properties. Bone, 31(1), 107-109. doi:10.1016/s8756-3282(02)00782-2

Parkinson, I. H., Badiei, A., & Fazzalari, N. L. (2008). Variation in segmentation of bone from micro-CT imaging: implications for quantitative morphometric analysis. Australasian Physics & Engineering Sciences in Medicine, 31(2), 160-164. doi:10.1007/bf03178592

Wachtel, E. F., & Keaveny, T. M. (1997). Dependence of trabecular damage on mechanical strain. Journal of Orthopaedic Research, 15(5), 781-787. doi:10.1002/jor.1100150522

Nazarian, A., Meier, D., Müller, R., & Snyder, B. D. (2009). Functional dependence of cancellous bone shear properties on trabecular microstructure evaluated using time-lapsed micro-computed tomographic imaging and torsion testing. Journal of Orthopaedic Research, 27(12), 1667-1674. doi:10.1002/jor.20931

Schwiedrzik, J., Taylor, A., Casari, D., Wolfram, U., Zysset, P., & Michler, J. (2017). Nanoscale deformation mechanisms and yield properties of hydrated bone extracellular matrix. Acta Biomaterialia, 60, 302-314. doi:10.1016/j.actbio.2017.07.030

Bevill, G., Eswaran, S. K., Gupta, A., Papadopoulos, P., & Keaveny, T. M. (2006). Influence of bone volume fraction and architecture on computed large-deformation failure mechanisms in human trabecular bone. Bone, 39(6), 1218-1225. doi:10.1016/j.bone.2006.06.016

Althouse, A. D. (2016). Adjust for Multiple Comparisons? It’s Not That Simple. The Annals of Thoracic Surgery, 101(5), 1644-1645. doi:10.1016/j.athoracsur.2015.11.024

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem