- -

Compression failure characterization of cancellous bone combining experimental testing, digital image correlation and finite element modeling

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Compression failure characterization of cancellous bone combining experimental testing, digital image correlation and finite element modeling

Show simple item record

Files in this item

dc.contributor.author Belda, R. es_ES
dc.contributor.author Palomar-Toledano, Marta es_ES
dc.contributor.author PERIS SERRA, JOSE LUIS es_ES
dc.contributor.author Vercher Martínez, Ana es_ES
dc.contributor.author Giner Maravilla, Eugenio es_ES
dc.date.accessioned 2021-03-25T04:31:30Z
dc.date.available 2021-03-25T04:31:30Z
dc.date.issued 2020-01-01 es_ES
dc.identifier.issn 0020-7403 es_ES
dc.identifier.uri http://hdl.handle.net/10251/164216
dc.description.abstract [EN] Cancellous bone yield strain has been reported in the literature to be relatively constant and independent from microstructure and apparent density, while fracture strain shows higher scattering. The objective of this work is to assess this hypothesis, characterizing the compression fracture in cancellous bone from a numerical approach and relating it to morphological parameters. Quasi-static compression fractures of cancellous bone samples are modeled using high-resolution image-based finite elements, correlating the numerical models and experimental results. The yield strain and the strain at fracture are inferred from the micro-CT-based finite element models by inverse analysis. The validation of the fracture models is carried out through digital image correlation (DIC). To develop this work, cancellous bone parallelepiped-shaped specimens were prepared and micro-CT scanned at 22 mu m spatial resolution. A morphometric analysis was carried out for each specimen in order to characterize its microstructure. Quasi-static compression tests were conducted, recording the force-displacement response and a sequence of images during testing for the application of the DIC technique. This was applied without the need of a speckle pattern benefiting from the irregular microstructure of cancellous bone. The finite element models are also used to simulate the local fracture of trabeculae at the micro level using a combination of continuum damage mechanics and the element deletion technique. Equivalent strain, computed both from DIC and micro-FE, was the best predictor of the compression fracture pattern. The procedure followed in this work permits the estimation of failure parameters that are difficult to measure experimentally, which can be used in numerical models. es_ES
dc.description.sponsorship This work was supported by the Spanish Ministerio de Ciencia, Innovacion y Universidades grant numbers DPI2013-46641-R and DPI2017-89197-C2-2-R and the Generalitat Valenciana (Programme PROMETEO 2016/007). The micro-CT acquisitions were performed at CENIEH facilities with the collaboration of CENIEH staff. The authors also gratefully acknowledge the collaboration of Ms. Lucia Gomez. es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof International Journal of Mechanical Sciences es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Compression fracture characterization es_ES
dc.subject Cancellous bone es_ES
dc.subject Digital image correlation es_ES
dc.subject Micro-FE es_ES
dc.subject.classification INGENIERIA MECANICA es_ES
dc.title Compression failure characterization of cancellous bone combining experimental testing, digital image correlation and finite element modeling es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.ijmecsci.2019.105213 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/DPI2017-89197-C2-2-R/ES/TALADRADO DE COMPONENTES HIBRIDOS CFRPS%2FTI Y TOLERANCIA AL DAÑO DEBIDO A MECANIZADO DURANTE EL COMPORTAMIENTO EN SERVICIO DE UNIONES ESTRUCTURALES AERONAUTICAS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEO%2F2016%2F007/ES/Modelado numérico avanzado en ingeniería mecánica/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//DPI2013-46641-R/ES/DESARROLLO DE MODELOS MICROESTRUCTURALES DE TEJIDO OSEO Y APLICACION A PROCEDIMIENTOS DE EVALUACION DEL RIESGO DE FRACTURA/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials es_ES
dc.description.bibliographicCitation Belda, R.; Palomar-Toledano, M.; Peris Serra, JL.; Vercher Martínez, A.; Giner Maravilla, E. (2020). Compression failure characterization of cancellous bone combining experimental testing, digital image correlation and finite element modeling. International Journal of Mechanical Sciences. 165:1-12. https://doi.org/10.1016/j.ijmecsci.2019.105213 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.ijmecsci.2019.105213 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 12 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 165 es_ES
dc.relation.pasarela S\396349 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Gold, D. T. (2001). The Nonskeletal Consequences of Osteoporotic Fractures. Rheumatic Disease Clinics of North America, 27(1), 255-262. doi:10.1016/s0889-857x(05)70197-6 es_ES
dc.description.references Keaveny, T. M., Morgan, E. F., Niebur, G. L., & Yeh, O. C. (2001). Biomechanics of Trabecular Bone. Annual Review of Biomedical Engineering, 3(1), 307-333. doi:10.1146/annurev.bioeng.3.1.307 es_ES
dc.description.references Rho, J.-Y., Kuhn-Spearing, L., & Zioupos, P. (1998). Mechanical properties and the hierarchical structure of bone. Medical Engineering & Physics, 20(2), 92-102. doi:10.1016/s1350-4533(98)00007-1 es_ES
dc.description.references Currey, J. D. (2011). The structure and mechanics of bone. Journal of Materials Science, 47(1), 41-54. doi:10.1007/s10853-011-5914-9 es_ES
dc.description.references Gupta, H. S., & Zioupos, P. (2008). Fracture of bone tissue: The ‘hows’ and the ‘whys’. Medical Engineering & Physics, 30(10), 1209-1226. doi:10.1016/j.medengphy.2008.09.007 es_ES
dc.description.references Nagaraja, S., Couse, T. L., & Guldberg, R. E. (2005). Trabecular bone microdamage and microstructural stresses under uniaxial compression. Journal of Biomechanics, 38(4), 707-716. doi:10.1016/j.jbiomech.2004.05.013 es_ES
dc.description.references Garcia, D., Zysset, P. K., Charlebois, M., & Curnier, A. (2008). A three-dimensional elastic plastic damage constitutive law for bone tissue. Biomechanics and Modeling in Mechanobiology, 8(2), 149-165. doi:10.1007/s10237-008-0125-2 es_ES
dc.description.references Ridha, H., & Thurner, P. J. (2013). Finite element prediction with experimental validation of damage distribution in single trabeculae during three-point bending tests. Journal of the Mechanical Behavior of Biomedical Materials, 27, 94-106. doi:10.1016/j.jmbbm.2013.07.005 es_ES
dc.description.references Hambli, R. (2012). A quasi-brittle continuum damage finite element model of the human proximal femur based on element deletion. Medical & Biological Engineering & Computing, 51(1-2), 219-231. doi:10.1007/s11517-012-0986-5 es_ES
dc.description.references Fan, R., Gong, H., Zhang, X., Liu, J., Jia, Z., & Zhu, D. (2016). Modeling the Mechanical Consequences of Age-Related Trabecular Bone Loss by XFEM Simulation. Computational and Mathematical Methods in Medicine, 2016, 1-12. doi:10.1155/2016/3495152 es_ES
dc.description.references Vellwock, A. E., Vergani, L., & Libonati, F. (2018). A multiscale XFEM approach to investigate the fracture behavior of bio-inspired composite materials. Composites Part B: Engineering, 141, 258-264. doi:10.1016/j.compositesb.2017.12.062 es_ES
dc.description.references Hambli, R. (2010). Multiscale prediction of crack density and crack length accumulation in trabecular bone based on neural networks and finite element simulation. International Journal for Numerical Methods in Biomedical Engineering, 27(4), 461-475. doi:10.1002/cnm.1413 es_ES
dc.description.references Hambli, R. (2011). Apparent damage accumulation in cancellous bone using neural networks. Journal of the Mechanical Behavior of Biomedical Materials, 4(6), 868-878. doi:10.1016/j.jmbbm.2011.03.002 es_ES
dc.description.references Lemaitre, J. (1985). A Continuous Damage Mechanics Model for Ductile Fracture. Journal of Engineering Materials and Technology, 107(1), 83-89. doi:10.1115/1.3225775 es_ES
dc.description.references Turner, C. H., & Burr, D. B. (1993). Basic biomechanical measurements of bone: A tutorial. Bone, 14(4), 595-608. doi:10.1016/8756-3282(93)90081-k es_ES
dc.description.references Bay, B. K. (1995). Texture correlation: A method for the measurement of detailed strain distributions within trabecular bone. Journal of Orthopaedic Research, 13(2), 258-267. doi:10.1002/jor.1100130214 es_ES
dc.description.references Peters, W. H., & Ranson, W. F. (1982). Digital Imaging Techniques In Experimental Stress Analysis. Optical Engineering, 21(3). doi:10.1117/12.7972925 es_ES
dc.description.references Sutton, M., Wolters, W., Peters, W., Ranson, W., & McNeill, S. (1983). Determination of displacements using an improved digital correlation method. Image and Vision Computing, 1(3), 133-139. doi:10.1016/0262-8856(83)90064-1 es_ES
dc.description.references Pan, B., Qian, K., Xie, H., & Asundi, A. (2009). Two-dimensional digital image correlation for in-plane displacement and strain measurement: a review. Measurement Science and Technology, 20(6), 062001. doi:10.1088/0957-0233/20/6/062001 es_ES
dc.description.references Khoo, S.-W., Karuppanan, S., & Tan, C.-S. (2016). A Review of Surface Deformation and Strain Measurement Using Two-Dimensional Digital Image Correlation. Metrology and Measurement Systems, 23(3), 461-480. doi:10.1515/mms-2016-0028 es_ES
dc.description.references Palanca, M., Tozzi, G., & Cristofolini, L. (2015). The use of digital image correlation in the biomechanical area: a review. International Biomechanics, 3(1), 1-21. doi:10.1080/23335432.2015.1117395 es_ES
dc.description.references Grassi, L., & Isaksson, H. (2015). Extracting accurate strain measurements in bone mechanics: A critical review of current methods. Journal of the Mechanical Behavior of Biomedical Materials, 50, 43-54. doi:10.1016/j.jmbbm.2015.06.006 es_ES
dc.description.references Bayraktar, H. H., Morgan, E. F., Niebur, G. L., Morris, G. E., Wong, E. K., & Keaveny, T. M. (2004). Comparison of the elastic and yield properties of human femoral trabecular and cortical bone tissue. Journal of Biomechanics, 37(1), 27-35. doi:10.1016/s0021-9290(03)00257-4 es_ES
dc.description.references Carretta, R., Stüssi, E., Müller, R., & Lorenzetti, S. (2013). Within subject heterogeneity in tissue-level post-yield mechanical and material properties in human trabecular bone. Journal of the Mechanical Behavior of Biomedical Materials, 24, 64-73. doi:10.1016/j.jmbbm.2013.04.014 es_ES
dc.description.references Linde, F., & Sørensen, H. C. F. (1993). The effect of different storage methods on the mechanical properties of trabecular bone. Journal of Biomechanics, 26(10), 1249-1252. doi:10.1016/0021-9290(93)90072-m es_ES
dc.description.references Linde, F., & Hvid, I. (1987). Stiffness behaviour of trabecular bone specimens. Journal of Biomechanics, 20(1), 83-89. doi:10.1016/0021-9290(87)90270-3 es_ES
dc.description.references Keaveny, T. M., Borchers, R. E., Gibson, L. J., & Hayes, W. C. (1993). Theoretical analysis of the experimental artifact in trabecular bone compressive modulus. Journal of Biomechanics, 26(4-5), 599-607. doi:10.1016/0021-9290(93)90021-6 es_ES
dc.description.references Keaveny, T. M., Guo, X. E., Wachtel, E. F., McMahon, T. A., & Hayes, W. C. (1994). Trabecular bone exhibits fully linear elastic behavior and yields at low strains. Journal of Biomechanics, 27(9), 1127-1136. doi:10.1016/0021-9290(94)90053-1 es_ES
dc.description.references Keaveny, T. M., Pinilla, T. P., Crawford, R. P., Kopperdahl, D. L., & Lou, A. (1997). Systematic and random errors in compression testing of trabecular bone. Journal of Orthopaedic Research, 15(1), 101-110. doi:10.1002/jor.1100150115 es_ES
dc.description.references Correlated Solutions. VIC-2d v6 reference manual. 2016. http://www.correlatedsolutions.com/supportcontent/Vic-2D-v6-Manual.pdf. es_ES
dc.description.references Whitehouse, W. J. (1974). The quantitative morphology of anisotropic trabecular bone. Journal of Microscopy, 101(2), 153-168. doi:10.1111/j.1365-2818.1974.tb03878.x es_ES
dc.description.references Kabel, J., van Rietbergen, B., Dalstra, M., Odgaard, A., & Huiskes, R. (1999). The role of an effective isotropic tissue modulus in the elastic properties of cancellous bone. Journal of Biomechanics, 32(7), 673-680. doi:10.1016/s0021-9290(99)00045-7 es_ES
dc.description.references Nalla, R. K., Kinney, J. H., & Ritchie, R. O. (2003). Mechanistic fracture criteria for the failure of human cortical bone. Nature Materials, 2(3), 164-168. doi:10.1038/nmat832 es_ES
dc.description.references Taylor, D. (2003). A crack growth model for the simulation of fatigue in bone. International Journal of Fatigue, 25(5), 387-395. doi:10.1016/s0142-1123(02)00165-2 es_ES
dc.description.references Burr, D. B., & Stafford, T. (1990). Validity of the Bulk-Staining Technique to Separate Artifactual From In Vivo Bone Microdamage. Clinical Orthopaedics and Related Research, 260, 305-308. doi:10.1097/00003086-199011000-00047 es_ES
dc.description.references Keaveny, T. M., & Hayes, W. C. (1993). A 20-Year Perspective on the Mechanical Properties of Trabecular Bone. Journal of Biomechanical Engineering, 115(4B), 534-542. doi:10.1115/1.2895536 es_ES
dc.description.references Wolfram, U., Wilke, H.-J., & Zysset, P. K. (2011). Damage accumulation in vertebral trabecular bone depends on loading mode and direction. Journal of Biomechanics, 44(6), 1164-1169. doi:10.1016/j.jbiomech.2011.01.018 es_ES
dc.description.references Kopperdahl, D. L., & Keaveny, T. M. (1998). Yield strain behavior of trabecular bone. Journal of Biomechanics, 31(7), 601-608. doi:10.1016/s0021-9290(98)00057-8 es_ES
dc.description.references Hara, T., Tanck, E., Homminga, J., & Huiskes, R. (2002). The influence of microcomputed tomography threshold variations on the assessment of structural and mechanical trabecular bone properties. Bone, 31(1), 107-109. doi:10.1016/s8756-3282(02)00782-2 es_ES
dc.description.references Parkinson, I. H., Badiei, A., & Fazzalari, N. L. (2008). Variation in segmentation of bone from micro-CT imaging: implications for quantitative morphometric analysis. Australasian Physics & Engineering Sciences in Medicine, 31(2), 160-164. doi:10.1007/bf03178592 es_ES
dc.description.references Wachtel, E. F., & Keaveny, T. M. (1997). Dependence of trabecular damage on mechanical strain. Journal of Orthopaedic Research, 15(5), 781-787. doi:10.1002/jor.1100150522 es_ES
dc.description.references Nazarian, A., Meier, D., Müller, R., & Snyder, B. D. (2009). Functional dependence of cancellous bone shear properties on trabecular microstructure evaluated using time-lapsed micro-computed tomographic imaging and torsion testing. Journal of Orthopaedic Research, 27(12), 1667-1674. doi:10.1002/jor.20931 es_ES
dc.description.references Schwiedrzik, J., Taylor, A., Casari, D., Wolfram, U., Zysset, P., & Michler, J. (2017). Nanoscale deformation mechanisms and yield properties of hydrated bone extracellular matrix. Acta Biomaterialia, 60, 302-314. doi:10.1016/j.actbio.2017.07.030 es_ES
dc.description.references Bevill, G., Eswaran, S. K., Gupta, A., Papadopoulos, P., & Keaveny, T. M. (2006). Influence of bone volume fraction and architecture on computed large-deformation failure mechanisms in human trabecular bone. Bone, 39(6), 1218-1225. doi:10.1016/j.bone.2006.06.016 es_ES
dc.description.references Althouse, A. D. (2016). Adjust for Multiple Comparisons? It’s Not That Simple. The Annals of Thoracic Surgery, 101(5), 1644-1645. doi:10.1016/j.athoracsur.2015.11.024 es_ES


This item appears in the following Collection(s)

Show simple item record