Gold, D. T. (2001). The Nonskeletal Consequences of Osteoporotic Fractures. Rheumatic Disease Clinics of North America, 27(1), 255-262. doi:10.1016/s0889-857x(05)70197-6
Keaveny, T. M., Morgan, E. F., Niebur, G. L., & Yeh, O. C. (2001). Biomechanics of Trabecular Bone. Annual Review of Biomedical Engineering, 3(1), 307-333. doi:10.1146/annurev.bioeng.3.1.307
Rho, J.-Y., Kuhn-Spearing, L., & Zioupos, P. (1998). Mechanical properties and the hierarchical structure of bone. Medical Engineering & Physics, 20(2), 92-102. doi:10.1016/s1350-4533(98)00007-1
[+]
Gold, D. T. (2001). The Nonskeletal Consequences of Osteoporotic Fractures. Rheumatic Disease Clinics of North America, 27(1), 255-262. doi:10.1016/s0889-857x(05)70197-6
Keaveny, T. M., Morgan, E. F., Niebur, G. L., & Yeh, O. C. (2001). Biomechanics of Trabecular Bone. Annual Review of Biomedical Engineering, 3(1), 307-333. doi:10.1146/annurev.bioeng.3.1.307
Rho, J.-Y., Kuhn-Spearing, L., & Zioupos, P. (1998). Mechanical properties and the hierarchical structure of bone. Medical Engineering & Physics, 20(2), 92-102. doi:10.1016/s1350-4533(98)00007-1
Currey, J. D. (2011). The structure and mechanics of bone. Journal of Materials Science, 47(1), 41-54. doi:10.1007/s10853-011-5914-9
Gupta, H. S., & Zioupos, P. (2008). Fracture of bone tissue: The ‘hows’ and the ‘whys’. Medical Engineering & Physics, 30(10), 1209-1226. doi:10.1016/j.medengphy.2008.09.007
Nagaraja, S., Couse, T. L., & Guldberg, R. E. (2005). Trabecular bone microdamage and microstructural stresses under uniaxial compression. Journal of Biomechanics, 38(4), 707-716. doi:10.1016/j.jbiomech.2004.05.013
Garcia, D., Zysset, P. K., Charlebois, M., & Curnier, A. (2008). A three-dimensional elastic plastic damage constitutive law for bone tissue. Biomechanics and Modeling in Mechanobiology, 8(2), 149-165. doi:10.1007/s10237-008-0125-2
Ridha, H., & Thurner, P. J. (2013). Finite element prediction with experimental validation of damage distribution in single trabeculae during three-point bending tests. Journal of the Mechanical Behavior of Biomedical Materials, 27, 94-106. doi:10.1016/j.jmbbm.2013.07.005
Hambli, R. (2012). A quasi-brittle continuum damage finite element model of the human proximal femur based on element deletion. Medical & Biological Engineering & Computing, 51(1-2), 219-231. doi:10.1007/s11517-012-0986-5
Fan, R., Gong, H., Zhang, X., Liu, J., Jia, Z., & Zhu, D. (2016). Modeling the Mechanical Consequences of Age-Related Trabecular Bone Loss by XFEM Simulation. Computational and Mathematical Methods in Medicine, 2016, 1-12. doi:10.1155/2016/3495152
Vellwock, A. E., Vergani, L., & Libonati, F. (2018). A multiscale XFEM approach to investigate the fracture behavior of bio-inspired composite materials. Composites Part B: Engineering, 141, 258-264. doi:10.1016/j.compositesb.2017.12.062
Hambli, R. (2010). Multiscale prediction of crack density and crack length accumulation in trabecular bone based on neural networks and finite element simulation. International Journal for Numerical Methods in Biomedical Engineering, 27(4), 461-475. doi:10.1002/cnm.1413
Hambli, R. (2011). Apparent damage accumulation in cancellous bone using neural networks. Journal of the Mechanical Behavior of Biomedical Materials, 4(6), 868-878. doi:10.1016/j.jmbbm.2011.03.002
Lemaitre, J. (1985). A Continuous Damage Mechanics Model for Ductile Fracture. Journal of Engineering Materials and Technology, 107(1), 83-89. doi:10.1115/1.3225775
Turner, C. H., & Burr, D. B. (1993). Basic biomechanical measurements of bone: A tutorial. Bone, 14(4), 595-608. doi:10.1016/8756-3282(93)90081-k
Bay, B. K. (1995). Texture correlation: A method for the measurement of detailed strain distributions within trabecular bone. Journal of Orthopaedic Research, 13(2), 258-267. doi:10.1002/jor.1100130214
Peters, W. H., & Ranson, W. F. (1982). Digital Imaging Techniques In Experimental Stress Analysis. Optical Engineering, 21(3). doi:10.1117/12.7972925
Sutton, M., Wolters, W., Peters, W., Ranson, W., & McNeill, S. (1983). Determination of displacements using an improved digital correlation method. Image and Vision Computing, 1(3), 133-139. doi:10.1016/0262-8856(83)90064-1
Pan, B., Qian, K., Xie, H., & Asundi, A. (2009). Two-dimensional digital image correlation for in-plane displacement and strain measurement: a review. Measurement Science and Technology, 20(6), 062001. doi:10.1088/0957-0233/20/6/062001
Khoo, S.-W., Karuppanan, S., & Tan, C.-S. (2016). A Review of Surface Deformation and Strain Measurement Using Two-Dimensional Digital Image Correlation. Metrology and Measurement Systems, 23(3), 461-480. doi:10.1515/mms-2016-0028
Palanca, M., Tozzi, G., & Cristofolini, L. (2015). The use of digital image correlation in the biomechanical area: a review. International Biomechanics, 3(1), 1-21. doi:10.1080/23335432.2015.1117395
Grassi, L., & Isaksson, H. (2015). Extracting accurate strain measurements in bone mechanics: A critical review of current methods. Journal of the Mechanical Behavior of Biomedical Materials, 50, 43-54. doi:10.1016/j.jmbbm.2015.06.006
Bayraktar, H. H., Morgan, E. F., Niebur, G. L., Morris, G. E., Wong, E. K., & Keaveny, T. M. (2004). Comparison of the elastic and yield properties of human femoral trabecular and cortical bone tissue. Journal of Biomechanics, 37(1), 27-35. doi:10.1016/s0021-9290(03)00257-4
Carretta, R., Stüssi, E., Müller, R., & Lorenzetti, S. (2013). Within subject heterogeneity in tissue-level post-yield mechanical and material properties in human trabecular bone. Journal of the Mechanical Behavior of Biomedical Materials, 24, 64-73. doi:10.1016/j.jmbbm.2013.04.014
Linde, F., & Sørensen, H. C. F. (1993). The effect of different storage methods on the mechanical properties of trabecular bone. Journal of Biomechanics, 26(10), 1249-1252. doi:10.1016/0021-9290(93)90072-m
Linde, F., & Hvid, I. (1987). Stiffness behaviour of trabecular bone specimens. Journal of Biomechanics, 20(1), 83-89. doi:10.1016/0021-9290(87)90270-3
Keaveny, T. M., Borchers, R. E., Gibson, L. J., & Hayes, W. C. (1993). Theoretical analysis of the experimental artifact in trabecular bone compressive modulus. Journal of Biomechanics, 26(4-5), 599-607. doi:10.1016/0021-9290(93)90021-6
Keaveny, T. M., Guo, X. E., Wachtel, E. F., McMahon, T. A., & Hayes, W. C. (1994). Trabecular bone exhibits fully linear elastic behavior and yields at low strains. Journal of Biomechanics, 27(9), 1127-1136. doi:10.1016/0021-9290(94)90053-1
Keaveny, T. M., Pinilla, T. P., Crawford, R. P., Kopperdahl, D. L., & Lou, A. (1997). Systematic and random errors in compression testing of trabecular bone. Journal of Orthopaedic Research, 15(1), 101-110. doi:10.1002/jor.1100150115
Correlated Solutions. VIC-2d v6 reference manual. 2016. http://www.correlatedsolutions.com/supportcontent/Vic-2D-v6-Manual.pdf.
Whitehouse, W. J. (1974). The quantitative morphology of anisotropic trabecular bone. Journal of Microscopy, 101(2), 153-168. doi:10.1111/j.1365-2818.1974.tb03878.x
Kabel, J., van Rietbergen, B., Dalstra, M., Odgaard, A., & Huiskes, R. (1999). The role of an effective isotropic tissue modulus in the elastic properties of cancellous bone. Journal of Biomechanics, 32(7), 673-680. doi:10.1016/s0021-9290(99)00045-7
Nalla, R. K., Kinney, J. H., & Ritchie, R. O. (2003). Mechanistic fracture criteria for the failure of human cortical bone. Nature Materials, 2(3), 164-168. doi:10.1038/nmat832
Taylor, D. (2003). A crack growth model for the simulation of fatigue in bone. International Journal of Fatigue, 25(5), 387-395. doi:10.1016/s0142-1123(02)00165-2
Burr, D. B., & Stafford, T. (1990). Validity of the Bulk-Staining Technique to Separate Artifactual From In Vivo Bone Microdamage. Clinical Orthopaedics and Related Research, 260, 305-308. doi:10.1097/00003086-199011000-00047
Keaveny, T. M., & Hayes, W. C. (1993). A 20-Year Perspective on the Mechanical Properties of Trabecular Bone. Journal of Biomechanical Engineering, 115(4B), 534-542. doi:10.1115/1.2895536
Wolfram, U., Wilke, H.-J., & Zysset, P. K. (2011). Damage accumulation in vertebral trabecular bone depends on loading mode and direction. Journal of Biomechanics, 44(6), 1164-1169. doi:10.1016/j.jbiomech.2011.01.018
Kopperdahl, D. L., & Keaveny, T. M. (1998). Yield strain behavior of trabecular bone. Journal of Biomechanics, 31(7), 601-608. doi:10.1016/s0021-9290(98)00057-8
Hara, T., Tanck, E., Homminga, J., & Huiskes, R. (2002). The influence of microcomputed tomography threshold variations on the assessment of structural and mechanical trabecular bone properties. Bone, 31(1), 107-109. doi:10.1016/s8756-3282(02)00782-2
Parkinson, I. H., Badiei, A., & Fazzalari, N. L. (2008). Variation in segmentation of bone from micro-CT imaging: implications for quantitative morphometric analysis. Australasian Physics & Engineering Sciences in Medicine, 31(2), 160-164. doi:10.1007/bf03178592
Wachtel, E. F., & Keaveny, T. M. (1997). Dependence of trabecular damage on mechanical strain. Journal of Orthopaedic Research, 15(5), 781-787. doi:10.1002/jor.1100150522
Nazarian, A., Meier, D., Müller, R., & Snyder, B. D. (2009). Functional dependence of cancellous bone shear properties on trabecular microstructure evaluated using time-lapsed micro-computed tomographic imaging and torsion testing. Journal of Orthopaedic Research, 27(12), 1667-1674. doi:10.1002/jor.20931
Schwiedrzik, J., Taylor, A., Casari, D., Wolfram, U., Zysset, P., & Michler, J. (2017). Nanoscale deformation mechanisms and yield properties of hydrated bone extracellular matrix. Acta Biomaterialia, 60, 302-314. doi:10.1016/j.actbio.2017.07.030
Bevill, G., Eswaran, S. K., Gupta, A., Papadopoulos, P., & Keaveny, T. M. (2006). Influence of bone volume fraction and architecture on computed large-deformation failure mechanisms in human trabecular bone. Bone, 39(6), 1218-1225. doi:10.1016/j.bone.2006.06.016
Althouse, A. D. (2016). Adjust for Multiple Comparisons? It’s Not That Simple. The Annals of Thoracic Surgery, 101(5), 1644-1645. doi:10.1016/j.athoracsur.2015.11.024
[-]