- -

New Approach to Estimate Extreme Flooding Using Continuous Synthetic Simulation Supported by Regional Precipitation and Non-Systematic Flood Data

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

New Approach to Estimate Extreme Flooding Using Continuous Synthetic Simulation Supported by Regional Precipitation and Non-Systematic Flood Data

Mostrar el registro completo del ítem

Beneyto, C.; Aranda Domingo, JÁ.; Benito, G.; Francés, F. (2020). New Approach to Estimate Extreme Flooding Using Continuous Synthetic Simulation Supported by Regional Precipitation and Non-Systematic Flood Data. Water. 12(11):1-16. https://doi.org/10.3390/w12113174

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/164218

Ficheros en el ítem

Metadatos del ítem

Título: New Approach to Estimate Extreme Flooding Using Continuous Synthetic Simulation Supported by Regional Precipitation and Non-Systematic Flood Data
Autor: Beneyto, Carles Aranda Domingo, José Ángel Benito, Gerardo Francés, F.
Entidad UPV: Universitat Politècnica de València. Departamento de Ingeniería Hidráulica y Medio Ambiente - Departament d'Enginyeria Hidràulica i Medi Ambient
Universitat Politècnica de València. Instituto Universitario de Ingeniería del Agua y del Medio Ambiente - Institut Universitari d'Enginyeria de l'Aigua i Medi Ambient
Universitat Politècnica de València. Departamento de Ingeniería Gráfica - Departament d'Enginyeria Gràfica
Fecha difusión:
Resumen:
[EN] Stochastic weather generators combined with hydrological models have been proposed for continuous synthetic simulation to estimate return periods of extreme floods. Yet, this approach relies upon the length and spatial ...[+]
Palabras clave: Weather generator , Palaeoflood , Regional extreme precipitation study , Ephemeral river , Fully distributed hydrology , Flood quantiles , Rambla de la Viuda
Derechos de uso: Reconocimiento (by)
Fuente:
Water. (issn: 2073-4441 )
DOI: 10.3390/w12113174
Editorial:
MDPI AG
Versión del editor: https://doi.org/10.3390/w12113174
Código del Proyecto:
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/CGL2017-86839-C3-1-R/ES/EVALUACION Y MODELACION DE LA RESPUESTA ECO-HIDROLOGICA Y SEDIMENTARIA EN CUENCAS MEDITERRANEAS PARA LA ADAPTACION AL CAMBIO CLIMATICO Y AMBIENTAL/
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-093717-B-I00/ES/MEJORAS DEL CONOCIMIENTO Y DE LAS CAPACIDADES DE MODELIZACION PARA LA PROGNOSIS DE LOS EFECTOS DEL CAMBIO GLOBAL EN UNA CUENCA HIDROLOGICA/
Agradecimientos:
This research was funded by the Spanish Ministry of Science and Innovation through the research projects TETISCHANGE (RTI2018-093717-B-100) and EPHIMED (CGL2017-86839-C3-1-R), both cofounded with FEDER European funds.
Tipo: Artículo

References

Stedinger, J. R., & Griffis, V. W. (2008). Flood Frequency Analysis in the United States: Time to Update. Journal of Hydrologic Engineering, 13(4), 199-204. doi:10.1061/(asce)1084-0699(2008)13:4(199)

Francés, F. (1998). Using the TCEV distribution function with systematic and non-systematic data in a regional flood frequency analysis. Stochastic Hydrology and Hydraulics, 12(4), 267-283. doi:10.1007/s004770050021

Merz, R., & Blöschl, G. (2009). Process controls on the statistical flood moments - a data based analysis. Hydrological Processes, 23(5), 675-696. doi:10.1002/hyp.7168 [+]
Stedinger, J. R., & Griffis, V. W. (2008). Flood Frequency Analysis in the United States: Time to Update. Journal of Hydrologic Engineering, 13(4), 199-204. doi:10.1061/(asce)1084-0699(2008)13:4(199)

Francés, F. (1998). Using the TCEV distribution function with systematic and non-systematic data in a regional flood frequency analysis. Stochastic Hydrology and Hydraulics, 12(4), 267-283. doi:10.1007/s004770050021

Merz, R., & Blöschl, G. (2009). Process controls on the statistical flood moments - a data based analysis. Hydrological Processes, 23(5), 675-696. doi:10.1002/hyp.7168

Stedinger, J. R., & Cohn, T. A. (1986). Flood Frequency Analysis With Historical and Paleoflood Information. Water Resources Research, 22(5), 785-793. doi:10.1029/wr022i005p00785

Botero, B. A., & Francés, F. (2010). Estimation of high return period flood quantiles using additional non-systematic information with upper bounded statistical models. Hydrology and Earth System Sciences, 14(12), 2617-2628. doi:10.5194/hess-14-2617-2010

Cohn, T. A., England, J. F., Berenbrock, C. E., Mason, R. R., Stedinger, J. R., & Lamontagne, J. R. (2013). A generalized Grubbs-Beck test statistic for detecting multiple potentially influential low outliers in flood series. Water Resources Research, 49(8), 5047-5058. doi:10.1002/wrcr.20392

Emmanuel, I., Payrastre, O., Andrieu, H., & Zuber, F. (2017). A method for assessing the influence of rainfall spatial variability on hydrograph modeling. First case study in the Cevennes Region, southern France. Journal of Hydrology, 555, 314-322. doi:10.1016/j.jhydrol.2017.10.011

Pathiraja, S., Westra, S., & Sharma, A. (2012). Why continuous simulation? The role of antecedent moisture in design flood estimation. Water Resources Research, 48(6). doi:10.1029/2011wr010997

Grimaldi, S., Nardi, F., Piscopia, R., Petroselli, A., & Apollonio, C. (2021). Continuous hydrologic modelling for design simulation in small and ungauged basins: A step forward and some tests for its practical use. Journal of Hydrology, 595, 125664. doi:10.1016/j.jhydrol.2020.125664

Cameron, D. ., Beven, K. ., Tawn, J., Blazkova, S., & Naden, P. (1999). Flood frequency estimation by continuous simulation for a gauged upland catchment (with uncertainty). Journal of Hydrology, 219(3-4), 169-187. doi:10.1016/s0022-1694(99)00057-8

Eagleson, P. S. (1972). Dynamics of flood frequency. Water Resources Research, 8(4), 878-898. doi:10.1029/wr008i004p00878

Brocca, L., Liersch, S., Melone, F., Moramarco, T., & Volk, M. (2013). Application of a model-based rainfall-runoff database as efficient tool for flood risk management. Hydrology and Earth System Sciences, 17(8), 3159-3169. doi:10.5194/hess-17-3159-2013

Cowpertwait, P., Ocio, D., Collazos, G., de Cos, O., & Stocker, C. (2013). Regionalised spatiotemporal rainfall and temperature models for flood studies in the Basque Country, Spain. Hydrology and Earth System Sciences, 17(2), 479-494. doi:10.5194/hess-17-479-2013

Boughton, W., & Droop, O. (2003). Continuous simulation for design flood estimation—a review. Environmental Modelling & Software, 18(4), 309-318. doi:10.1016/s1364-8152(03)00004-5

Soltani, A., & Hoogenboom, G. (2003). Minimum data requirements for parameter estimation of stochastic weather generators. Climate Research, 25, 109-119. doi:10.3354/cr025109

Verdin, A., Rajagopalan, B., Kleiber, W., & Katz, R. W. (2014). Coupled stochastic weather generation using spatial and generalized linear models. Stochastic Environmental Research and Risk Assessment, 29(2), 347-356. doi:10.1007/s00477-014-0911-6

Cavanaugh, N. R., Gershunov, A., Panorska, A. K., & Kozubowski, T. J. (2015). The probability distribution of intense daily precipitation. Geophysical Research Letters, 42(5), 1560-1567. doi:10.1002/2015gl063238

Furrer, E. M., & Katz, R. W. (2008). Improving the simulation of extreme precipitation events by stochastic weather generators. Water Resources Research, 44(12). doi:10.1029/2008wr007316

Evin, G., Favre, A.-C., & Hingray, B. (2018). Stochastic generation of multi-site daily precipitation focusing on extreme events. Hydrology and Earth System Sciences, 22(1), 655-672. doi:10.5194/hess-22-655-2018

Metzger, A., Marra, F., Smith, J. A., & Morin, E. (2020). Flood frequency estimation and uncertainty in arid/semi-arid regions. Journal of Hydrology, 590, 125254. doi:10.1016/j.jhydrol.2020.125254

Zaman, M. A., Rahman, A., & Haddad, K. (2012). Regional flood frequency analysis in arid regions: A case study for Australia. Journal of Hydrology, 475, 74-83. doi:10.1016/j.jhydrol.2012.08.054

Merz, R., & Blöschl, G. (2008). Flood frequency hydrology: 1. Temporal, spatial, and causal expansion of information. Water Resources Research, 44(8). doi:10.1029/2007wr006744

Merz, R., & Blöschl, G. (2008). Flood frequency hydrology: 2. Combining data evidence. Water Resources Research, 44(8). doi:10.1029/2007wr006745

Benito, G., Sanchez-Moya, Y., Medialdea, A., Barriendos, M., Calle, M., Rico, M., … Machado, M. (2020). Extreme Floods in Small Mediterranean Catchments: Long-Term Response to Climate Variability and Change. Water, 12(4), 1008. doi:10.3390/w12041008

Baker, V. R. (1987). Paleoflood hydrology and extraordinary flood events. Journal of Hydrology, 96(1-4), 79-99. doi:10.1016/0022-1694(87)90145-4

Ballesteros-Cánovas, J. A., Sanchez-Silva, M., Bodoque, J. M., & Díez-Herrero, A. (2013). An Integrated Approach to Flood Risk Management: A Case Study of Navaluenga (Central Spain). Water Resources Management, 27(8), 3051-3069. doi:10.1007/s11269-013-0332-1

Frances, F., Salas, J. D., & Boes, D. C. (1994). Flood frequency analysis with systematic and historical or paleoflood data based on the two-parameter general extreme value models. Water Resources Research, 30(6), 1653-1664. doi:10.1029/94wr00154

Stedinger, J. R., & Baker, V. R. (1987). Surface water hydrology: Historical and paleoflood information. Reviews of Geophysics, 25(2), 119. doi:10.1029/rg025i002p00119

Simón, J. L., Pérez-Cueva, A. J., & Calvo-Cases, A. (2013). Tectonic beheading of fluvial valleys in the Maestrat grabens (eastern Spain): Insights into slip rates of Pleistocene extensional faults. Tectonophysics, 593, 73-84. doi:10.1016/j.tecto.2013.02.026

Camarasa Belmonte, A. M., & Segura Beltrán, F. (2001). Flood events in Mediterranean ephemeral streams (ramblas) in Valencia region, Spain. CATENA, 45(3), 229-249. doi:10.1016/s0341-8162(01)00146-1

Llasat, M. C., & Puigcerver, M. (1990). Cold air pools over Europe. Meteorology and Atmospheric Physics, 42(3-4), 171-177. doi:10.1007/bf01314823

Herrera, S., Fernández, J., & Gutiérrez, J. M. (2015). Update of the Spain02 gridded observational dataset for EURO-CORDEX evaluation: assessing the effect of the interpolation methodology. International Journal of Climatology, 36(2), 900-908. doi:10.1002/joc.4391

Machado, M. J., Medialdea, A., Calle, M., Rico, M. T., Sánchez-Moya, Y., Sopeña, A., & Benito, G. (2017). Historical palaeohydrology and landscape resilience of a Mediterranean rambla (Castellón, NE Spain): Floods and people. Quaternary Science Reviews, 171, 182-198. doi:10.1016/j.quascirev.2017.07.014

Francés, F., Vélez, J. I., & Vélez, J. J. (2007). Split-parameter structure for the automatic calibration of distributed hydrological models. Journal of Hydrology, 332(1-2), 226-240. doi:10.1016/j.jhydrol.2006.06.032

Papastathopoulos, I., & Tawn, J. A. (2013). Extended generalised Pareto models for tail estimation. Journal of Statistical Planning and Inference, 143(1), 131-143. doi:10.1016/j.jspi.2012.07.001

El Libro de la Provincia de Castellonhttp://hdl.handle.net/10234/14914

Cunnane, C. (1978). Unbiased plotting positions — A review. Journal of Hydrology, 37(3-4), 205-222. doi:10.1016/0022-1694(78)90017-3

Gringorten, I. I. (1963). A plotting rule for extreme probability paper. Journal of Geophysical Research, 68(3), 813-814. doi:10.1029/jz068i003p00813

Nash, J. E., & Sutcliffe, J. V. (1970). River flow forecasting through conceptual models part I — A discussion of principles. Journal of Hydrology, 10(3), 282-290. doi:10.1016/0022-1694(70)90255-6

HAKTANIR, T., & HORLACHER, H. B. (1993). Evaluation of various distributions for flood frequency analysis. Hydrological Sciences Journal, 38(1), 15-32. doi:10.1080/02626669309492637

Chen, X., & Hossain, F. (2019). Understanding Future Safety of Dams in a Changing Climate. Bulletin of the American Meteorological Society, 100(8), 1395-1404. doi:10.1175/bams-d-17-0150.1

Lamb, R., Faulkner, D., Wass, P., & Cameron, D. (2016). Have applications of continuous rainfall–runoff simulation realized the vision for process‐based flood frequency analysis? Hydrological Processes, 30(14), 2463-2481. doi:10.1002/hyp.10882

Benito, G., & Thorndycraft, V. R. (2005). Palaeoflood hydrology and its role in applied hydrological sciences. Journal of Hydrology, 313(1-2), 3-15. doi:10.1016/j.jhydrol.2005.02.002

Lam, D., Thompson, C., Croke, J., Sharma, A., & Macklin, M. (2017). Reducing uncertainty with flood frequency analysis: The contribution of paleoflood and historical flood information. Water Resources Research, 53(3), 2312-2327. doi:10.1002/2016wr019959

Fuller, W. E. (1914). Flood Flows. Transactions of the American Society of Civil Engineers, 77(1), 564-617. doi:10.1061/taceat.0002552

Applied hydrology. (1968). Journal of Hydrology, 6(2), 224-225. doi:10.1016/0022-1694(68)90169-8

Sangal, B. P. (1983). Practical Method of Estimating Peak Flow. Journal of Hydraulic Engineering, 109(4), 549-563. doi:10.1061/(asce)0733-9429(1983)109:4(549)

Fathzadeh, A., Jaydari, A., & Taghizadeh-Mehrjardi, R. (2016). Comparison of different methods for reconstruction of instantaneous peak flow data. Intelligent Automation & Soft Computing, 23(1), 41-49. doi:10.1080/10798587.2015.1120991

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem