Stedinger, J. R., & Griffis, V. W. (2008). Flood Frequency Analysis in the United States: Time to Update. Journal of Hydrologic Engineering, 13(4), 199-204. doi:10.1061/(asce)1084-0699(2008)13:4(199)
Francés, F. (1998). Using the TCEV distribution function with systematic and non-systematic data in a regional flood frequency analysis. Stochastic Hydrology and Hydraulics, 12(4), 267-283. doi:10.1007/s004770050021
Merz, R., & Blöschl, G. (2009). Process controls on the statistical flood moments - a data based analysis. Hydrological Processes, 23(5), 675-696. doi:10.1002/hyp.7168
[+]
Stedinger, J. R., & Griffis, V. W. (2008). Flood Frequency Analysis in the United States: Time to Update. Journal of Hydrologic Engineering, 13(4), 199-204. doi:10.1061/(asce)1084-0699(2008)13:4(199)
Francés, F. (1998). Using the TCEV distribution function with systematic and non-systematic data in a regional flood frequency analysis. Stochastic Hydrology and Hydraulics, 12(4), 267-283. doi:10.1007/s004770050021
Merz, R., & Blöschl, G. (2009). Process controls on the statistical flood moments - a data based analysis. Hydrological Processes, 23(5), 675-696. doi:10.1002/hyp.7168
Stedinger, J. R., & Cohn, T. A. (1986). Flood Frequency Analysis With Historical and Paleoflood Information. Water Resources Research, 22(5), 785-793. doi:10.1029/wr022i005p00785
Botero, B. A., & Francés, F. (2010). Estimation of high return period flood quantiles using additional non-systematic information with upper bounded statistical models. Hydrology and Earth System Sciences, 14(12), 2617-2628. doi:10.5194/hess-14-2617-2010
Cohn, T. A., England, J. F., Berenbrock, C. E., Mason, R. R., Stedinger, J. R., & Lamontagne, J. R. (2013). A generalized Grubbs-Beck test statistic for detecting multiple potentially influential low outliers in flood series. Water Resources Research, 49(8), 5047-5058. doi:10.1002/wrcr.20392
Emmanuel, I., Payrastre, O., Andrieu, H., & Zuber, F. (2017). A method for assessing the influence of rainfall spatial variability on hydrograph modeling. First case study in the Cevennes Region, southern France. Journal of Hydrology, 555, 314-322. doi:10.1016/j.jhydrol.2017.10.011
Pathiraja, S., Westra, S., & Sharma, A. (2012). Why continuous simulation? The role of antecedent moisture in design flood estimation. Water Resources Research, 48(6). doi:10.1029/2011wr010997
Grimaldi, S., Nardi, F., Piscopia, R., Petroselli, A., & Apollonio, C. (2021). Continuous hydrologic modelling for design simulation in small and ungauged basins: A step forward and some tests for its practical use. Journal of Hydrology, 595, 125664. doi:10.1016/j.jhydrol.2020.125664
Cameron, D. ., Beven, K. ., Tawn, J., Blazkova, S., & Naden, P. (1999). Flood frequency estimation by continuous simulation for a gauged upland catchment (with uncertainty). Journal of Hydrology, 219(3-4), 169-187. doi:10.1016/s0022-1694(99)00057-8
Eagleson, P. S. (1972). Dynamics of flood frequency. Water Resources Research, 8(4), 878-898. doi:10.1029/wr008i004p00878
Brocca, L., Liersch, S., Melone, F., Moramarco, T., & Volk, M. (2013). Application of a model-based rainfall-runoff database as efficient tool for flood risk management. Hydrology and Earth System Sciences, 17(8), 3159-3169. doi:10.5194/hess-17-3159-2013
Cowpertwait, P., Ocio, D., Collazos, G., de Cos, O., & Stocker, C. (2013). Regionalised spatiotemporal rainfall and temperature models for flood studies in the Basque Country, Spain. Hydrology and Earth System Sciences, 17(2), 479-494. doi:10.5194/hess-17-479-2013
Boughton, W., & Droop, O. (2003). Continuous simulation for design flood estimation—a review. Environmental Modelling & Software, 18(4), 309-318. doi:10.1016/s1364-8152(03)00004-5
Soltani, A., & Hoogenboom, G. (2003). Minimum data requirements for parameter estimation of stochastic weather generators. Climate Research, 25, 109-119. doi:10.3354/cr025109
Verdin, A., Rajagopalan, B., Kleiber, W., & Katz, R. W. (2014). Coupled stochastic weather generation using spatial and generalized linear models. Stochastic Environmental Research and Risk Assessment, 29(2), 347-356. doi:10.1007/s00477-014-0911-6
Cavanaugh, N. R., Gershunov, A., Panorska, A. K., & Kozubowski, T. J. (2015). The probability distribution of intense daily precipitation. Geophysical Research Letters, 42(5), 1560-1567. doi:10.1002/2015gl063238
Furrer, E. M., & Katz, R. W. (2008). Improving the simulation of extreme precipitation events by stochastic weather generators. Water Resources Research, 44(12). doi:10.1029/2008wr007316
Evin, G., Favre, A.-C., & Hingray, B. (2018). Stochastic generation of multi-site daily precipitation focusing on extreme events. Hydrology and Earth System Sciences, 22(1), 655-672. doi:10.5194/hess-22-655-2018
Metzger, A., Marra, F., Smith, J. A., & Morin, E. (2020). Flood frequency estimation and uncertainty in arid/semi-arid regions. Journal of Hydrology, 590, 125254. doi:10.1016/j.jhydrol.2020.125254
Zaman, M. A., Rahman, A., & Haddad, K. (2012). Regional flood frequency analysis in arid regions: A case study for Australia. Journal of Hydrology, 475, 74-83. doi:10.1016/j.jhydrol.2012.08.054
Merz, R., & Blöschl, G. (2008). Flood frequency hydrology: 1. Temporal, spatial, and causal expansion of information. Water Resources Research, 44(8). doi:10.1029/2007wr006744
Merz, R., & Blöschl, G. (2008). Flood frequency hydrology: 2. Combining data evidence. Water Resources Research, 44(8). doi:10.1029/2007wr006745
Benito, G., Sanchez-Moya, Y., Medialdea, A., Barriendos, M., Calle, M., Rico, M., … Machado, M. (2020). Extreme Floods in Small Mediterranean Catchments: Long-Term Response to Climate Variability and Change. Water, 12(4), 1008. doi:10.3390/w12041008
Baker, V. R. (1987). Paleoflood hydrology and extraordinary flood events. Journal of Hydrology, 96(1-4), 79-99. doi:10.1016/0022-1694(87)90145-4
Ballesteros-Cánovas, J. A., Sanchez-Silva, M., Bodoque, J. M., & Díez-Herrero, A. (2013). An Integrated Approach to Flood Risk Management: A Case Study of Navaluenga (Central Spain). Water Resources Management, 27(8), 3051-3069. doi:10.1007/s11269-013-0332-1
Frances, F., Salas, J. D., & Boes, D. C. (1994). Flood frequency analysis with systematic and historical or paleoflood data based on the two-parameter general extreme value models. Water Resources Research, 30(6), 1653-1664. doi:10.1029/94wr00154
Stedinger, J. R., & Baker, V. R. (1987). Surface water hydrology: Historical and paleoflood information. Reviews of Geophysics, 25(2), 119. doi:10.1029/rg025i002p00119
Simón, J. L., Pérez-Cueva, A. J., & Calvo-Cases, A. (2013). Tectonic beheading of fluvial valleys in the Maestrat grabens (eastern Spain): Insights into slip rates of Pleistocene extensional faults. Tectonophysics, 593, 73-84. doi:10.1016/j.tecto.2013.02.026
Camarasa Belmonte, A. M., & Segura Beltrán, F. (2001). Flood events in Mediterranean ephemeral streams (ramblas) in Valencia region, Spain. CATENA, 45(3), 229-249. doi:10.1016/s0341-8162(01)00146-1
Llasat, M. C., & Puigcerver, M. (1990). Cold air pools over Europe. Meteorology and Atmospheric Physics, 42(3-4), 171-177. doi:10.1007/bf01314823
Herrera, S., Fernández, J., & Gutiérrez, J. M. (2015). Update of the Spain02 gridded observational dataset for EURO-CORDEX evaluation: assessing the effect of the interpolation methodology. International Journal of Climatology, 36(2), 900-908. doi:10.1002/joc.4391
Machado, M. J., Medialdea, A., Calle, M., Rico, M. T., Sánchez-Moya, Y., Sopeña, A., & Benito, G. (2017). Historical palaeohydrology and landscape resilience of a Mediterranean rambla (Castellón, NE Spain): Floods and people. Quaternary Science Reviews, 171, 182-198. doi:10.1016/j.quascirev.2017.07.014
Francés, F., Vélez, J. I., & Vélez, J. J. (2007). Split-parameter structure for the automatic calibration of distributed hydrological models. Journal of Hydrology, 332(1-2), 226-240. doi:10.1016/j.jhydrol.2006.06.032
Papastathopoulos, I., & Tawn, J. A. (2013). Extended generalised Pareto models for tail estimation. Journal of Statistical Planning and Inference, 143(1), 131-143. doi:10.1016/j.jspi.2012.07.001
El Libro de la Provincia de Castellonhttp://hdl.handle.net/10234/14914
Cunnane, C. (1978). Unbiased plotting positions — A review. Journal of Hydrology, 37(3-4), 205-222. doi:10.1016/0022-1694(78)90017-3
Gringorten, I. I. (1963). A plotting rule for extreme probability paper. Journal of Geophysical Research, 68(3), 813-814. doi:10.1029/jz068i003p00813
Nash, J. E., & Sutcliffe, J. V. (1970). River flow forecasting through conceptual models part I — A discussion of principles. Journal of Hydrology, 10(3), 282-290. doi:10.1016/0022-1694(70)90255-6
HAKTANIR, T., & HORLACHER, H. B. (1993). Evaluation of various distributions for flood frequency analysis. Hydrological Sciences Journal, 38(1), 15-32. doi:10.1080/02626669309492637
Chen, X., & Hossain, F. (2019). Understanding Future Safety of Dams in a Changing Climate. Bulletin of the American Meteorological Society, 100(8), 1395-1404. doi:10.1175/bams-d-17-0150.1
Lamb, R., Faulkner, D., Wass, P., & Cameron, D. (2016). Have applications of continuous rainfall–runoff simulation realized the vision for process‐based flood frequency analysis? Hydrological Processes, 30(14), 2463-2481. doi:10.1002/hyp.10882
Benito, G., & Thorndycraft, V. R. (2005). Palaeoflood hydrology and its role in applied hydrological sciences. Journal of Hydrology, 313(1-2), 3-15. doi:10.1016/j.jhydrol.2005.02.002
Lam, D., Thompson, C., Croke, J., Sharma, A., & Macklin, M. (2017). Reducing uncertainty with flood frequency analysis: The contribution of paleoflood and historical flood information. Water Resources Research, 53(3), 2312-2327. doi:10.1002/2016wr019959
Fuller, W. E. (1914). Flood Flows. Transactions of the American Society of Civil Engineers, 77(1), 564-617. doi:10.1061/taceat.0002552
Applied hydrology. (1968). Journal of Hydrology, 6(2), 224-225. doi:10.1016/0022-1694(68)90169-8
Sangal, B. P. (1983). Practical Method of Estimating Peak Flow. Journal of Hydraulic Engineering, 109(4), 549-563. doi:10.1061/(asce)0733-9429(1983)109:4(549)
Fathzadeh, A., Jaydari, A., & Taghizadeh-Mehrjardi, R. (2016). Comparison of different methods for reconstruction of instantaneous peak flow data. Intelligent Automation & Soft Computing, 23(1), 41-49. doi:10.1080/10798587.2015.1120991
[-]