- -

Biocompatibility and internalization assessment of bare and functionalised mesoporous silica nanoparticles

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Biocompatibility and internalization assessment of bare and functionalised mesoporous silica nanoparticles

Show full item record

Garrido-Cano, I.; Candela-Noguera, V.; Herrera, G.; Cejalvo, JM.; Lluch, A.; Marcos Martínez, MD.; Sancenón Galarza, F.... (2021). Biocompatibility and internalization assessment of bare and functionalised mesoporous silica nanoparticles. Microporous and Mesoporous Materials. 310:1-12. https://doi.org/10.1016/j.micromeso.2020.110593

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/164422

Files in this item

Item Metadata

Title: Biocompatibility and internalization assessment of bare and functionalised mesoporous silica nanoparticles
Author: Garrido-Cano, Iris Candela-Noguera, Vicente Herrera, Guadalupe Cejalvo, Juan Miguel Lluch, Ana Marcos Martínez, María Dolores Sancenón Galarza, Félix Eroles, Pilar Martínez-Máñez, Ramón
UPV Unit: Universitat Politècnica de València. Departamento de Biotecnología - Departament de Biotecnologia
Universitat Politècnica de València. Departamento de Química - Departament de Química
Issued date:
Abstract:
[EN] We report herein an evaluation of the effect of several mesoporous silica nanoparticles (MSNs) on the cellular uptake and in vitro cytotoxicity in human cells. Bare MSNs and MSNs functionalized with polyethylene glycol ...[+]
Subjects: Mesoporous silica nanoparticles , Internalization , Toxicity , Biocompatibility
Copyrigths: Cerrado
Source:
Microporous and Mesoporous Materials. (issn: 1387-1811 )
DOI: 10.1016/j.micromeso.2020.110593
Publisher:
Elsevier
Publisher version: https://doi.org/10.1016/j.micromeso.2020.110593
Project ID:
Instituto de Salud Carlos III (ISCIII)/PI18/01219
...[+]
Instituto de Salud Carlos III (ISCIII)/PI18/01219
GV/AICO/2016/030
CIBER-BBN/CB07/01/2012
CIBERONC/CB16/12/00481
GENERALITAT VALENCIANA/PROMETEO/2018/024
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-100910-B-C41/ES/MATERIALES POROSOS INTELIGENTES MULTIFUNCIONALES Y DISPOSITIVOS ELECTRONICOS PARA LA LIBERACION DE FARMACOS, DETECCION DE DROGAS Y BIOMARCADORES Y COMUNICACION A NANOESCALA/
[-]
Thanks:
The authors want to thank the Spanish Government RTI2018-100910-B-C41 (MCUI/AEI/FEDER, UE) and PI18/01219 (ISCIII), the Generalitat Valenciana (PROMETEO/2018/024 and ACIF/2016/030), and CIBER-BBN (CB07/01/2012) and CIBER-ONC ...[+]
Type: Artículo

References

Contado, C. (2015). Nanomaterials in consumer products: a challenging analytical problem. Frontiers in Chemistry, 3. doi:10.3389/fchem.2015.00048

Wang, Y., Zhao, Q., Han, N., Bai, L., Li, J., Liu, J., … Wang, S. (2015). Mesoporous silica nanoparticles in drug delivery and biomedical applications. Nanomedicine: Nanotechnology, Biology and Medicine, 11(2), 313-327. doi:10.1016/j.nano.2014.09.014

Kankala, R. K., Han, Y., Na, J., Lee, C., Sun, Z., Wang, S., … Wu, K. C. ‐W. (2020). Nanoarchitectured Structure and Surface Biofunctionality of Mesoporous Silica Nanoparticles. Advanced Materials, 32(23), 1907035. doi:10.1002/adma.201907035 [+]
Contado, C. (2015). Nanomaterials in consumer products: a challenging analytical problem. Frontiers in Chemistry, 3. doi:10.3389/fchem.2015.00048

Wang, Y., Zhao, Q., Han, N., Bai, L., Li, J., Liu, J., … Wang, S. (2015). Mesoporous silica nanoparticles in drug delivery and biomedical applications. Nanomedicine: Nanotechnology, Biology and Medicine, 11(2), 313-327. doi:10.1016/j.nano.2014.09.014

Kankala, R. K., Han, Y., Na, J., Lee, C., Sun, Z., Wang, S., … Wu, K. C. ‐W. (2020). Nanoarchitectured Structure and Surface Biofunctionality of Mesoporous Silica Nanoparticles. Advanced Materials, 32(23), 1907035. doi:10.1002/adma.201907035

García‐Fernández, A., Aznar, E., Martínez‐Máñez, R., & Sancenón, F. (2019). New Advances in In Vivo Applications of Gated Mesoporous Silica as Drug Delivery Nanocarriers. Small, 16(3), 1902242. doi:10.1002/smll.201902242

Doustkhah, E., Lin, J., Rostamnia, S., Len, C., Luque, R., Luo, X., … Ide, Y. (2018). Development of Sulfonic-Acid-Functionalized Mesoporous Materials: Synthesis and Catalytic Applications. Chemistry - A European Journal, 25(7), 1614-1635. doi:10.1002/chem.201802183

Möller, K., & Bein, T. (2019). Degradable Drug Carriers: Vanishing Mesoporous Silica Nanoparticles. Chemistry of Materials, 31(12), 4364-4378. doi:10.1021/acs.chemmater.9b00221

Paris, J. L., Colilla, M., Izquierdo-Barba, I., Manzano, M., & Vallet-Regí, M. (2017). Tuning mesoporous silica dissolution in physiological environments: a review. Journal of Materials Science, 52(15), 8761-8771. doi:10.1007/s10853-017-0787-1

Aznar, E., Oroval, M., Pascual, L., Murguía, J. R., Martínez-Máñez, R., & Sancenón, F. (2016). Gated Materials for On-Command Release of Guest Molecules. Chemical Reviews, 116(2), 561-718. doi:10.1021/acs.chemrev.5b00456

Sancenón, F., Pascual, L., Oroval, M., Aznar, E., & Martínez-Máñez, R. (2015). Gated Silica Mesoporous Materials in Sensing Applications. ChemistryOpen, 4(4), 418-437. doi:10.1002/open.201500053

Mekaru, H., Lu, J., & Tamanoi, F. (2015). Development of mesoporous silica-based nanoparticles with controlled release capability for cancer therapy. Advanced Drug Delivery Reviews, 95, 40-49. doi:10.1016/j.addr.2015.09.009

SLOWING, I., VIVEROESCOTO, J., WU, C., & LIN, V. (2008). Mesoporous silica nanoparticles as controlled release drug delivery and gene transfection carriers☆. Advanced Drug Delivery Reviews, 60(11), 1278-1288. doi:10.1016/j.addr.2008.03.012

Llopis-Lorente, A., Lozano-Torres, B., Bernardos, A., Martínez-Máñez, R., & Sancenón, F. (2017). Mesoporous silica materials for controlled delivery based on enzymes. Journal of Materials Chemistry B, 5(17), 3069-3083. doi:10.1039/c7tb00348j

Llopis-Lorente, A., Díez, P., Sánchez, A., Marcos, M. D., Sancenón, F., Martínez-Ruiz, P., … Martínez-Máñez, R. (2017). Interactive models of communication at the nanoscale using nanoparticles that talk to one another. Nature Communications, 8(1). doi:10.1038/ncomms15511

Luis, B., Llopis‐Lorente, A., Rincón, P., Gadea, J., Sancenón, F., Aznar, E., … Martínez‐Máñez, R. (2019). An Interactive Model of Communication between Abiotic Nanodevices and Microorganisms. Angewandte Chemie International Edition, 58(42), 14986-14990. doi:10.1002/anie.201908867

De la Torre, C., Domínguez-Berrocal, L., Murguía, J. R., Marcos, M. D., Martínez-Máñez, R., Bravo, J., & Sancenón, F. (2018). ϵ -Polylysine-Capped Mesoporous Silica Nanoparticles as Carrier of the C 9h Peptide to Induce Apoptosis in Cancer Cells. Chemistry - A European Journal, 24(8), 1890-1897. doi:10.1002/chem.201704161

Polo, L., Gómez-Cerezo, N., Aznar, E., Vivancos, J.-L., Sancenón, F., Arcos, D., … Martínez-Máñez, R. (2017). Molecular gates in mesoporous bioactive glasses for the treatment of bone tumors and infection. Acta Biomaterialia, 50, 114-126. doi:10.1016/j.actbio.2016.12.025

Ultimo, A., Giménez, C., Bartovsky, P., Aznar, E., Sancenón, F., Marcos, M. D., … Murguía, J. R. (2016). Targeting Innate Immunity with dsRNA-Conjugated Mesoporous Silica Nanoparticles Promotes Antitumor Effects on Breast Cancer Cells. Chemistry - A European Journal, 22(5), 1582-1586. doi:10.1002/chem.201504629

Slowing, I., Trewyn, B. G., & Lin, V. S.-Y. (2006). Effect of Surface Functionalization of MCM-41-Type Mesoporous Silica Nanoparticles on the Endocytosis by Human Cancer Cells. Journal of the American Chemical Society, 128(46), 14792-14793. doi:10.1021/ja0645943

Chung, T.-H., Wu, S.-H., Yao, M., Lu, C.-W., Lin, Y.-S., Hung, Y., … Huang, D.-M. (2007). The effect of surface charge on the uptake and biological function of mesoporous silica nanoparticles in 3T3-L1 cells and human mesenchymal stem cells. Biomaterials, 28(19), 2959-2966. doi:10.1016/j.biomaterials.2007.03.006

Nairi, V., Magnolia, S., Piludu, M., Nieddu, M., Caria, C. A., Sogos, V., … Salis, A. (2018). Mesoporous silica nanoparticles functionalized with hyaluronic acid. Effect of the biopolymer chain length on cell internalization. Colloids and Surfaces B: Biointerfaces, 168, 50-59. doi:10.1016/j.colsurfb.2018.02.019

Xie, X., Liao, J., Shao, X., Li, Q., & Lin, Y. (2017). The Effect of shape on Cellular Uptake of Gold Nanoparticles in the forms of Stars, Rods, and Triangles. Scientific Reports, 7(1). doi:10.1038/s41598-017-04229-z

Dos Santos, T., Varela, J., Lynch, I., Salvati, A., & Dawson, K. A. (2011). Effects of Transport Inhibitors on the Cellular Uptake of Carboxylated Polystyrene Nanoparticles in Different Cell Lines. PLoS ONE, 6(9), e24438. doi:10.1371/journal.pone.0024438

Kuhn, D. A., Vanhecke, D., Michen, B., Blank, F., Gehr, P., Petri-Fink, A., & Rothen-Rutishauser, B. (2014). Different endocytotic uptake mechanisms for nanoparticles in epithelial cells and macrophages. Beilstein Journal of Nanotechnology, 5, 1625-1636. doi:10.3762/bjnano.5.174

Lunov, O., Syrovets, T., Loos, C., Beil, J., Delacher, M., Tron, K., … Simmet, T. (2011). Differential Uptake of Functionalized Polystyrene Nanoparticles by Human Macrophages and a Monocytic Cell Line. ACS Nano, 5(3), 1657-1669. doi:10.1021/nn2000756

Calero, M., Gutiérrez, L., Salas, G., Luengo, Y., Lázaro, A., Acedo, P., … Villanueva, A. (2014). Efficient and safe internalization of magnetic iron oxide nanoparticles: Two fundamental requirements for biomedical applications. Nanomedicine: Nanotechnology, Biology and Medicine, 10(4), 733-743. doi:10.1016/j.nano.2013.11.010

Ebabe Elle, R., Rahmani, S., Lauret, C., Morena, M., Bidel, L. P. R., Boulahtouf, A., … Badia, E. (2016). Functionalized Mesoporous Silica Nanoparticle with Antioxidants as a New Carrier That Generates Lower Oxidative Stress Impact on Cells. Molecular Pharmaceutics, 13(8), 2647-2660. doi:10.1021/acs.molpharmaceut.6b00190

Heikkilä, T., Santos, H. A., Kumar, N., Murzin, D. Y., Salonen, J., Laaksonen, T., … Lehto, V.-P. (2010). Cytotoxicity study of ordered mesoporous silica MCM-41 and SBA-15 microparticles on Caco-2 cells. European Journal of Pharmaceutics and Biopharmaceutics, 74(3), 483-494. doi:10.1016/j.ejpb.2009.12.006

Kim, I.-Y., Joachim, E., Choi, H., & Kim, K. (2015). Toxicity of silica nanoparticles depends on size, dose, and cell type. Nanomedicine: Nanotechnology, Biology and Medicine, 11(6), 1407-1416. doi:10.1016/j.nano.2015.03.004

Tao, Z., Toms, B. B., Goodisman, J., & Asefa, T. (2009). Mesoporosity and Functional Group Dependent Endocytosis and Cytotoxicity of Silica Nanomaterials. Chemical Research in Toxicology, 22(11), 1869-1880. doi:10.1021/tx900276u

Lin, W., Huang, Y., Zhou, X.-D., & Ma, Y. (2006). In vitro toxicity of silica nanoparticles in human lung cancer cells. Toxicology and Applied Pharmacology, 217(3), 252-259. doi:10.1016/j.taap.2006.10.004

McCarthy, J., Inkielewicz-Stępniak, I., Corbalan, J. J., & Radomski, M. W. (2012). Mechanisms of Toxicity of Amorphous Silica Nanoparticles on Human Lung Submucosal Cells in Vitro: Protective Effects of Fisetin. Chemical Research in Toxicology, 25(10), 2227-2235. doi:10.1021/tx3002884

Kettiger, H., Sen Karaman, D., Schiesser, L., Rosenholm, J. M., & Huwyler, J. (2015). Comparative safety evaluation of silica-based particles. Toxicology in Vitro, 30(1), 355-363. doi:10.1016/j.tiv.2015.09.030

Kresge, C. T., Leonowicz, M. E., Roth, W. J., Vartuli, J. C., & Beck, J. S. (1992). Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature, 359(6397), 710-712. doi:10.1038/359710a0

Giménez, C., de la Torre, C., Gorbe, M., Aznar, E., Sancenón, F., Murguía, J. R., … Amorós, P. (2015). Gated Mesoporous Silica Nanoparticles for the Controlled Delivery of Drugs in Cancer Cells. Langmuir, 31(12), 3753-3762. doi:10.1021/acs.langmuir.5b00139

Gomes, A., Fernandes, E., & Lima, J. L. F. C. (2005). Fluorescence probes used for detection of reactive oxygen species. Journal of Biochemical and Biophysical Methods, 65(2-3), 45-80. doi:10.1016/j.jbbm.2005.10.003

Kalyanaraman, B., Darley-Usmar, V., Davies, K. J. A., Dennery, P. A., Forman, H. J., Grisham, M. B., … Ischiropoulos, H. (2012). Measuring reactive oxygen and nitrogen species with fluorescent probes: challenges and limitations. Free Radical Biology and Medicine, 52(1), 1-6. doi:10.1016/j.freeradbiomed.2011.09.030

Scaduto, R. C., & Grotyohann, L. W. (1999). Measurement of Mitochondrial Membrane Potential Using Fluorescent Rhodamine Derivatives. Biophysical Journal, 76(1), 469-477. doi:10.1016/s0006-3495(99)77214-0

Creed, S., & McKenzie, M. (2019). Measurement of Mitochondrial Membrane Potential with the Fluorescent Dye Tetramethylrhodamine Methyl Ester (TMRM). Cancer Metabolism, 69-76. doi:10.1007/978-1-4939-9027-6_5

Pisani, C., Rascol, E., Dorandeu, C., Charnay, C., Guari, Y., Chopineau, J., … Prat, O. (2017). Biocompatibility assessment of functionalized magnetic mesoporous silica nanoparticles in human HepaRG cells. Nanotoxicology, 11(7), 871-890. doi:10.1080/17435390.2017.1378749

Verma, A., & Stellacci, F. (2010). Effect of Surface Properties on Nanoparticleâ Cell Interactions. Small, 6(1), 12-21. doi:10.1002/smll.200901158

Yin Win, K., & Feng, S.-S. (2005). Effects of particle size and surface coating on cellular uptake of polymeric nanoparticles for oral delivery of anticancer drugs. Biomaterials, 26(15), 2713-2722. doi:10.1016/j.biomaterials.2004.07.050

REJMAN, J., OBERLE, V., ZUHORN, I. S., & HOEKSTRA, D. (2004). Size-dependent internalization of particles via the pathways of clathrin- and caveolae-mediated endocytosis. Biochemical Journal, 377(1), 159-169. doi:10.1042/bj20031253

Salatin, S., & Yari Khosroushahi, A. (2017). Overviews on the cellular uptake mechanism of polysaccharide colloidal nanoparticles. Journal of Cellular and Molecular Medicine, 21(9), 1668-1686. doi:10.1111/jcmm.13110

Vercauteren, D., Vandenbroucke, R. E., Jones, A. T., Rejman, J., Demeester, J., De Smedt, S. C., … Braeckmans, K. (2010). The Use of Inhibitors to Study Endocytic Pathways of Gene Carriers: Optimization and Pitfalls. Molecular Therapy, 18(3), 561-569. doi:10.1038/mt.2009.281

Dutta, D., & Donaldson, J. G. (2012). Search for inhibitors of endocytosis. Cellular Logistics, 2(4), 203-208. doi:10.4161/cl.23967

Gratton, S. E. A., Ropp, P. A., Pohlhaus, P. D., Luft, J. C., Madden, V. J., Napier, M. E., & DeSimone, J. M. (2008). The effect of particle design on cellular internalization pathways. Proceedings of the National Academy of Sciences, 105(33), 11613-11618. doi:10.1073/pnas.0801763105

Iversen, T., Frerker, N., & Sandvig, K. (2012). Uptake of ricinB-quantum dot nanoparticles by a macropinocytosis-like mechanism. Journal of Nanobiotechnology, 10(1), 33. doi:10.1186/1477-3155-10-33

Jambhrunkar, S., Qu, Z., Popat, A., Yang, J., Noonan, O., Acauan, L., … Karmakar, S. (2014). Effect of Surface Functionality of Silica Nanoparticles on Cellular Uptake and Cytotoxicity. Molecular Pharmaceutics, 11(10), 3642-3655. doi:10.1021/mp500385n

Zhang, H., Dunphy, D. R., Jiang, X., Meng, H., Sun, B., Tarn, D., … Brinker, C. J. (2012). Processing Pathway Dependence of Amorphous Silica Nanoparticle Toxicity: Colloidal vs Pyrolytic. Journal of the American Chemical Society, 134(38), 15790-15804. doi:10.1021/ja304907c

Murugadoss, S., Lison, D., Godderis, L., Van Den Brule, S., Mast, J., Brassinne, F., … Hoet, P. H. (2017). Toxicology of silica nanoparticles: an update. Archives of Toxicology, 91(9), 2967-3010. doi:10.1007/s00204-017-1993-y

CHEN, M., & VONMIKECZ, A. (2005). Formation of nucleoplasmic protein aggregates impairs nuclear function in response to SiO nanoparticles. Experimental Cell Research, 305(1), 51-62. doi:10.1016/j.yexcr.2004.12.021

Sun, L., Li, Y., Liu, X., Jin, M., Zhang, L., Du, Z., … Sun, Z. (2011). Cytotoxicity and mitochondrial damage caused by silica nanoparticles. Toxicology in Vitro, 25(8), 1619-1629. doi:10.1016/j.tiv.2011.06.012

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record