- -

Biocompatibility and internalization assessment of bare and functionalised mesoporous silica nanoparticles

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Biocompatibility and internalization assessment of bare and functionalised mesoporous silica nanoparticles

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Garrido-Cano, Iris es_ES
dc.contributor.author Candela-Noguera, Vicente es_ES
dc.contributor.author Herrera, Guadalupe es_ES
dc.contributor.author Cejalvo, Juan Miguel es_ES
dc.contributor.author Lluch, Ana es_ES
dc.contributor.author Marcos Martínez, María Dolores es_ES
dc.contributor.author Sancenón Galarza, Félix es_ES
dc.contributor.author Eroles, Pilar es_ES
dc.contributor.author Martínez-Máñez, Ramón es_ES
dc.date.accessioned 2021-03-26T04:31:11Z
dc.date.available 2021-03-26T04:31:11Z
dc.date.issued 2021-01 es_ES
dc.identifier.issn 1387-1811 es_ES
dc.identifier.uri http://hdl.handle.net/10251/164422
dc.description.abstract [EN] We report herein an evaluation of the effect of several mesoporous silica nanoparticles (MSNs) on the cellular uptake and in vitro cytotoxicity in human cells. Bare MSNs and MSNs functionalized with polyethylene glycol or hyaluronic acid are employed to evaluate uptake efficiency and mechanisms of endocytosis in cancer (MDA-MB-231) and non-cancer (MCF10A) cells. Moreover, changes in viability, cell cycle, oxidative stress, and mitochondrial membrane potential are evaluated. Our results confirm that MSNs are internalized efficiently by human cells and that uptake mechanisms differ for cell types and particles. We also confirm that MSNs are biocompatible materials that do not induce ROS/RNS production, nor changes on mitochondrial membrane potential or cell cycle. es_ES
dc.description.sponsorship The authors want to thank the Spanish Government RTI2018-100910-B-C41 (MCUI/AEI/FEDER, UE) and PI18/01219 (ISCIII), the Generalitat Valenciana (PROMETEO/2018/024 and ACIF/2016/030), and CIBER-BBN (CB07/01/2012) and CIBER-ONC (CB16/12/00481) for support. es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Microporous and Mesoporous Materials es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Mesoporous silica nanoparticles es_ES
dc.subject Internalization es_ES
dc.subject Toxicity es_ES
dc.subject Biocompatibility es_ES
dc.subject.classification QUIMICA ORGANICA es_ES
dc.subject.classification BIOQUIMICA Y BIOLOGIA MOLECULAR es_ES
dc.subject.classification QUIMICA INORGANICA es_ES
dc.title Biocompatibility and internalization assessment of bare and functionalised mesoporous silica nanoparticles es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.micromeso.2020.110593 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/ISCIII//PI18%2F01219/ES/Caracterización y repercusión terapéutica de la ecología de cáncer de mama HER2 positivo/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//AICO%2F2016%2F030/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//CB07%2F01%2F2012/ES/Bioingeniería, biomateriales y nanomedicina/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//CB16%2F12%2F00481/ES/CANCER/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEO%2F2018%2F024/ES/Sistemas avanzados de liberación controlada/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-100910-B-C41/ES/MATERIALES POROSOS INTELIGENTES MULTIFUNCIONALES Y DISPOSITIVOS ELECTRONICOS PARA LA LIBERACION DE FARMACOS, DETECCION DE DROGAS Y BIOMARCADORES Y COMUNICACION A NANOESCALA/ es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Biotecnología - Departament de Biotecnologia es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Química - Departament de Química es_ES
dc.description.bibliographicCitation Garrido-Cano, I.; Candela-Noguera, V.; Herrera, G.; Cejalvo, JM.; Lluch, A.; Marcos Martínez, MD.; Sancenón Galarza, F.... (2021). Biocompatibility and internalization assessment of bare and functionalised mesoporous silica nanoparticles. Microporous and Mesoporous Materials. 310:1-12. https://doi.org/10.1016/j.micromeso.2020.110593 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.micromeso.2020.110593 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 12 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 310 es_ES
dc.relation.pasarela S\423349 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Instituto de Salud Carlos III es_ES
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Contado, C. (2015). Nanomaterials in consumer products: a challenging analytical problem. Frontiers in Chemistry, 3. doi:10.3389/fchem.2015.00048 es_ES
dc.description.references Wang, Y., Zhao, Q., Han, N., Bai, L., Li, J., Liu, J., … Wang, S. (2015). Mesoporous silica nanoparticles in drug delivery and biomedical applications. Nanomedicine: Nanotechnology, Biology and Medicine, 11(2), 313-327. doi:10.1016/j.nano.2014.09.014 es_ES
dc.description.references Kankala, R. K., Han, Y., Na, J., Lee, C., Sun, Z., Wang, S., … Wu, K. C. ‐W. (2020). Nanoarchitectured Structure and Surface Biofunctionality of Mesoporous Silica Nanoparticles. Advanced Materials, 32(23), 1907035. doi:10.1002/adma.201907035 es_ES
dc.description.references García‐Fernández, A., Aznar, E., Martínez‐Máñez, R., & Sancenón, F. (2019). New Advances in In Vivo Applications of Gated Mesoporous Silica as Drug Delivery Nanocarriers. Small, 16(3), 1902242. doi:10.1002/smll.201902242 es_ES
dc.description.references Doustkhah, E., Lin, J., Rostamnia, S., Len, C., Luque, R., Luo, X., … Ide, Y. (2018). Development of Sulfonic-Acid-Functionalized Mesoporous Materials: Synthesis and Catalytic Applications. Chemistry - A European Journal, 25(7), 1614-1635. doi:10.1002/chem.201802183 es_ES
dc.description.references Möller, K., & Bein, T. (2019). Degradable Drug Carriers: Vanishing Mesoporous Silica Nanoparticles. Chemistry of Materials, 31(12), 4364-4378. doi:10.1021/acs.chemmater.9b00221 es_ES
dc.description.references Paris, J. L., Colilla, M., Izquierdo-Barba, I., Manzano, M., & Vallet-Regí, M. (2017). Tuning mesoporous silica dissolution in physiological environments: a review. Journal of Materials Science, 52(15), 8761-8771. doi:10.1007/s10853-017-0787-1 es_ES
dc.description.references Aznar, E., Oroval, M., Pascual, L., Murguía, J. R., Martínez-Máñez, R., & Sancenón, F. (2016). Gated Materials for On-Command Release of Guest Molecules. Chemical Reviews, 116(2), 561-718. doi:10.1021/acs.chemrev.5b00456 es_ES
dc.description.references Sancenón, F., Pascual, L., Oroval, M., Aznar, E., & Martínez-Máñez, R. (2015). Gated Silica Mesoporous Materials in Sensing Applications. ChemistryOpen, 4(4), 418-437. doi:10.1002/open.201500053 es_ES
dc.description.references Mekaru, H., Lu, J., & Tamanoi, F. (2015). Development of mesoporous silica-based nanoparticles with controlled release capability for cancer therapy. Advanced Drug Delivery Reviews, 95, 40-49. doi:10.1016/j.addr.2015.09.009 es_ES
dc.description.references SLOWING, I., VIVEROESCOTO, J., WU, C., & LIN, V. (2008). Mesoporous silica nanoparticles as controlled release drug delivery and gene transfection carriers☆. Advanced Drug Delivery Reviews, 60(11), 1278-1288. doi:10.1016/j.addr.2008.03.012 es_ES
dc.description.references Llopis-Lorente, A., Lozano-Torres, B., Bernardos, A., Martínez-Máñez, R., & Sancenón, F. (2017). Mesoporous silica materials for controlled delivery based on enzymes. Journal of Materials Chemistry B, 5(17), 3069-3083. doi:10.1039/c7tb00348j es_ES
dc.description.references Llopis-Lorente, A., Díez, P., Sánchez, A., Marcos, M. D., Sancenón, F., Martínez-Ruiz, P., … Martínez-Máñez, R. (2017). Interactive models of communication at the nanoscale using nanoparticles that talk to one another. Nature Communications, 8(1). doi:10.1038/ncomms15511 es_ES
dc.description.references Luis, B., Llopis‐Lorente, A., Rincón, P., Gadea, J., Sancenón, F., Aznar, E., … Martínez‐Máñez, R. (2019). An Interactive Model of Communication between Abiotic Nanodevices and Microorganisms. Angewandte Chemie International Edition, 58(42), 14986-14990. doi:10.1002/anie.201908867 es_ES
dc.description.references De la Torre, C., Domínguez-Berrocal, L., Murguía, J. R., Marcos, M. D., Martínez-Máñez, R., Bravo, J., & Sancenón, F. (2018). ϵ -Polylysine-Capped Mesoporous Silica Nanoparticles as Carrier of the C 9h Peptide to Induce Apoptosis in Cancer Cells. Chemistry - A European Journal, 24(8), 1890-1897. doi:10.1002/chem.201704161 es_ES
dc.description.references Polo, L., Gómez-Cerezo, N., Aznar, E., Vivancos, J.-L., Sancenón, F., Arcos, D., … Martínez-Máñez, R. (2017). Molecular gates in mesoporous bioactive glasses for the treatment of bone tumors and infection. Acta Biomaterialia, 50, 114-126. doi:10.1016/j.actbio.2016.12.025 es_ES
dc.description.references Ultimo, A., Giménez, C., Bartovsky, P., Aznar, E., Sancenón, F., Marcos, M. D., … Murguía, J. R. (2016). Targeting Innate Immunity with dsRNA-Conjugated Mesoporous Silica Nanoparticles Promotes Antitumor Effects on Breast Cancer Cells. Chemistry - A European Journal, 22(5), 1582-1586. doi:10.1002/chem.201504629 es_ES
dc.description.references Slowing, I., Trewyn, B. G., & Lin, V. S.-Y. (2006). Effect of Surface Functionalization of MCM-41-Type Mesoporous Silica Nanoparticles on the Endocytosis by Human Cancer Cells. Journal of the American Chemical Society, 128(46), 14792-14793. doi:10.1021/ja0645943 es_ES
dc.description.references Chung, T.-H., Wu, S.-H., Yao, M., Lu, C.-W., Lin, Y.-S., Hung, Y., … Huang, D.-M. (2007). The effect of surface charge on the uptake and biological function of mesoporous silica nanoparticles in 3T3-L1 cells and human mesenchymal stem cells. Biomaterials, 28(19), 2959-2966. doi:10.1016/j.biomaterials.2007.03.006 es_ES
dc.description.references Nairi, V., Magnolia, S., Piludu, M., Nieddu, M., Caria, C. A., Sogos, V., … Salis, A. (2018). Mesoporous silica nanoparticles functionalized with hyaluronic acid. Effect of the biopolymer chain length on cell internalization. Colloids and Surfaces B: Biointerfaces, 168, 50-59. doi:10.1016/j.colsurfb.2018.02.019 es_ES
dc.description.references Xie, X., Liao, J., Shao, X., Li, Q., & Lin, Y. (2017). The Effect of shape on Cellular Uptake of Gold Nanoparticles in the forms of Stars, Rods, and Triangles. Scientific Reports, 7(1). doi:10.1038/s41598-017-04229-z es_ES
dc.description.references Dos Santos, T., Varela, J., Lynch, I., Salvati, A., & Dawson, K. A. (2011). Effects of Transport Inhibitors on the Cellular Uptake of Carboxylated Polystyrene Nanoparticles in Different Cell Lines. PLoS ONE, 6(9), e24438. doi:10.1371/journal.pone.0024438 es_ES
dc.description.references Kuhn, D. A., Vanhecke, D., Michen, B., Blank, F., Gehr, P., Petri-Fink, A., & Rothen-Rutishauser, B. (2014). Different endocytotic uptake mechanisms for nanoparticles in epithelial cells and macrophages. Beilstein Journal of Nanotechnology, 5, 1625-1636. doi:10.3762/bjnano.5.174 es_ES
dc.description.references Lunov, O., Syrovets, T., Loos, C., Beil, J., Delacher, M., Tron, K., … Simmet, T. (2011). Differential Uptake of Functionalized Polystyrene Nanoparticles by Human Macrophages and a Monocytic Cell Line. ACS Nano, 5(3), 1657-1669. doi:10.1021/nn2000756 es_ES
dc.description.references Calero, M., Gutiérrez, L., Salas, G., Luengo, Y., Lázaro, A., Acedo, P., … Villanueva, A. (2014). Efficient and safe internalization of magnetic iron oxide nanoparticles: Two fundamental requirements for biomedical applications. Nanomedicine: Nanotechnology, Biology and Medicine, 10(4), 733-743. doi:10.1016/j.nano.2013.11.010 es_ES
dc.description.references Ebabe Elle, R., Rahmani, S., Lauret, C., Morena, M., Bidel, L. P. R., Boulahtouf, A., … Badia, E. (2016). Functionalized Mesoporous Silica Nanoparticle with Antioxidants as a New Carrier That Generates Lower Oxidative Stress Impact on Cells. Molecular Pharmaceutics, 13(8), 2647-2660. doi:10.1021/acs.molpharmaceut.6b00190 es_ES
dc.description.references Heikkilä, T., Santos, H. A., Kumar, N., Murzin, D. Y., Salonen, J., Laaksonen, T., … Lehto, V.-P. (2010). Cytotoxicity study of ordered mesoporous silica MCM-41 and SBA-15 microparticles on Caco-2 cells. European Journal of Pharmaceutics and Biopharmaceutics, 74(3), 483-494. doi:10.1016/j.ejpb.2009.12.006 es_ES
dc.description.references Kim, I.-Y., Joachim, E., Choi, H., & Kim, K. (2015). Toxicity of silica nanoparticles depends on size, dose, and cell type. Nanomedicine: Nanotechnology, Biology and Medicine, 11(6), 1407-1416. doi:10.1016/j.nano.2015.03.004 es_ES
dc.description.references Tao, Z., Toms, B. B., Goodisman, J., & Asefa, T. (2009). Mesoporosity and Functional Group Dependent Endocytosis and Cytotoxicity of Silica Nanomaterials. Chemical Research in Toxicology, 22(11), 1869-1880. doi:10.1021/tx900276u es_ES
dc.description.references Lin, W., Huang, Y., Zhou, X.-D., & Ma, Y. (2006). In vitro toxicity of silica nanoparticles in human lung cancer cells. Toxicology and Applied Pharmacology, 217(3), 252-259. doi:10.1016/j.taap.2006.10.004 es_ES
dc.description.references McCarthy, J., Inkielewicz-Stępniak, I., Corbalan, J. J., & Radomski, M. W. (2012). Mechanisms of Toxicity of Amorphous Silica Nanoparticles on Human Lung Submucosal Cells in Vitro: Protective Effects of Fisetin. Chemical Research in Toxicology, 25(10), 2227-2235. doi:10.1021/tx3002884 es_ES
dc.description.references Kettiger, H., Sen Karaman, D., Schiesser, L., Rosenholm, J. M., & Huwyler, J. (2015). Comparative safety evaluation of silica-based particles. Toxicology in Vitro, 30(1), 355-363. doi:10.1016/j.tiv.2015.09.030 es_ES
dc.description.references Kresge, C. T., Leonowicz, M. E., Roth, W. J., Vartuli, J. C., & Beck, J. S. (1992). Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature, 359(6397), 710-712. doi:10.1038/359710a0 es_ES
dc.description.references Giménez, C., de la Torre, C., Gorbe, M., Aznar, E., Sancenón, F., Murguía, J. R., … Amorós, P. (2015). Gated Mesoporous Silica Nanoparticles for the Controlled Delivery of Drugs in Cancer Cells. Langmuir, 31(12), 3753-3762. doi:10.1021/acs.langmuir.5b00139 es_ES
dc.description.references Gomes, A., Fernandes, E., & Lima, J. L. F. C. (2005). Fluorescence probes used for detection of reactive oxygen species. Journal of Biochemical and Biophysical Methods, 65(2-3), 45-80. doi:10.1016/j.jbbm.2005.10.003 es_ES
dc.description.references Kalyanaraman, B., Darley-Usmar, V., Davies, K. J. A., Dennery, P. A., Forman, H. J., Grisham, M. B., … Ischiropoulos, H. (2012). Measuring reactive oxygen and nitrogen species with fluorescent probes: challenges and limitations. Free Radical Biology and Medicine, 52(1), 1-6. doi:10.1016/j.freeradbiomed.2011.09.030 es_ES
dc.description.references Scaduto, R. C., & Grotyohann, L. W. (1999). Measurement of Mitochondrial Membrane Potential Using Fluorescent Rhodamine Derivatives. Biophysical Journal, 76(1), 469-477. doi:10.1016/s0006-3495(99)77214-0 es_ES
dc.description.references Creed, S., & McKenzie, M. (2019). Measurement of Mitochondrial Membrane Potential with the Fluorescent Dye Tetramethylrhodamine Methyl Ester (TMRM). Cancer Metabolism, 69-76. doi:10.1007/978-1-4939-9027-6_5 es_ES
dc.description.references Pisani, C., Rascol, E., Dorandeu, C., Charnay, C., Guari, Y., Chopineau, J., … Prat, O. (2017). Biocompatibility assessment of functionalized magnetic mesoporous silica nanoparticles in human HepaRG cells. Nanotoxicology, 11(7), 871-890. doi:10.1080/17435390.2017.1378749 es_ES
dc.description.references Verma, A., & Stellacci, F. (2010). Effect of Surface Properties on Nanoparticleâ Cell Interactions. Small, 6(1), 12-21. doi:10.1002/smll.200901158 es_ES
dc.description.references Yin Win, K., & Feng, S.-S. (2005). Effects of particle size and surface coating on cellular uptake of polymeric nanoparticles for oral delivery of anticancer drugs. Biomaterials, 26(15), 2713-2722. doi:10.1016/j.biomaterials.2004.07.050 es_ES
dc.description.references REJMAN, J., OBERLE, V., ZUHORN, I. S., & HOEKSTRA, D. (2004). Size-dependent internalization of particles via the pathways of clathrin- and caveolae-mediated endocytosis. Biochemical Journal, 377(1), 159-169. doi:10.1042/bj20031253 es_ES
dc.description.references Salatin, S., & Yari Khosroushahi, A. (2017). Overviews on the cellular uptake mechanism of polysaccharide colloidal nanoparticles. Journal of Cellular and Molecular Medicine, 21(9), 1668-1686. doi:10.1111/jcmm.13110 es_ES
dc.description.references Vercauteren, D., Vandenbroucke, R. E., Jones, A. T., Rejman, J., Demeester, J., De Smedt, S. C., … Braeckmans, K. (2010). The Use of Inhibitors to Study Endocytic Pathways of Gene Carriers: Optimization and Pitfalls. Molecular Therapy, 18(3), 561-569. doi:10.1038/mt.2009.281 es_ES
dc.description.references Dutta, D., & Donaldson, J. G. (2012). Search for inhibitors of endocytosis. Cellular Logistics, 2(4), 203-208. doi:10.4161/cl.23967 es_ES
dc.description.references Gratton, S. E. A., Ropp, P. A., Pohlhaus, P. D., Luft, J. C., Madden, V. J., Napier, M. E., & DeSimone, J. M. (2008). The effect of particle design on cellular internalization pathways. Proceedings of the National Academy of Sciences, 105(33), 11613-11618. doi:10.1073/pnas.0801763105 es_ES
dc.description.references Iversen, T., Frerker, N., & Sandvig, K. (2012). Uptake of ricinB-quantum dot nanoparticles by a macropinocytosis-like mechanism. Journal of Nanobiotechnology, 10(1), 33. doi:10.1186/1477-3155-10-33 es_ES
dc.description.references Jambhrunkar, S., Qu, Z., Popat, A., Yang, J., Noonan, O., Acauan, L., … Karmakar, S. (2014). Effect of Surface Functionality of Silica Nanoparticles on Cellular Uptake and Cytotoxicity. Molecular Pharmaceutics, 11(10), 3642-3655. doi:10.1021/mp500385n es_ES
dc.description.references Zhang, H., Dunphy, D. R., Jiang, X., Meng, H., Sun, B., Tarn, D., … Brinker, C. J. (2012). Processing Pathway Dependence of Amorphous Silica Nanoparticle Toxicity: Colloidal vs Pyrolytic. Journal of the American Chemical Society, 134(38), 15790-15804. doi:10.1021/ja304907c es_ES
dc.description.references Murugadoss, S., Lison, D., Godderis, L., Van Den Brule, S., Mast, J., Brassinne, F., … Hoet, P. H. (2017). Toxicology of silica nanoparticles: an update. Archives of Toxicology, 91(9), 2967-3010. doi:10.1007/s00204-017-1993-y es_ES
dc.description.references CHEN, M., & VONMIKECZ, A. (2005). Formation of nucleoplasmic protein aggregates impairs nuclear function in response to SiO nanoparticles. Experimental Cell Research, 305(1), 51-62. doi:10.1016/j.yexcr.2004.12.021 es_ES
dc.description.references Sun, L., Li, Y., Liu, X., Jin, M., Zhang, L., Du, Z., … Sun, Z. (2011). Cytotoxicity and mitochondrial damage caused by silica nanoparticles. Toxicology in Vitro, 25(8), 1619-1629. doi:10.1016/j.tiv.2011.06.012 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem