Contado, C. (2015). Nanomaterials in consumer products: a challenging analytical problem. Frontiers in Chemistry, 3. doi:10.3389/fchem.2015.00048
Wang, Y., Zhao, Q., Han, N., Bai, L., Li, J., Liu, J., … Wang, S. (2015). Mesoporous silica nanoparticles in drug delivery and biomedical applications. Nanomedicine: Nanotechnology, Biology and Medicine, 11(2), 313-327. doi:10.1016/j.nano.2014.09.014
Kankala, R. K., Han, Y., Na, J., Lee, C., Sun, Z., Wang, S., … Wu, K. C. ‐W. (2020). Nanoarchitectured Structure and Surface Biofunctionality of Mesoporous Silica Nanoparticles. Advanced Materials, 32(23), 1907035. doi:10.1002/adma.201907035
[+]
Contado, C. (2015). Nanomaterials in consumer products: a challenging analytical problem. Frontiers in Chemistry, 3. doi:10.3389/fchem.2015.00048
Wang, Y., Zhao, Q., Han, N., Bai, L., Li, J., Liu, J., … Wang, S. (2015). Mesoporous silica nanoparticles in drug delivery and biomedical applications. Nanomedicine: Nanotechnology, Biology and Medicine, 11(2), 313-327. doi:10.1016/j.nano.2014.09.014
Kankala, R. K., Han, Y., Na, J., Lee, C., Sun, Z., Wang, S., … Wu, K. C. ‐W. (2020). Nanoarchitectured Structure and Surface Biofunctionality of Mesoporous Silica Nanoparticles. Advanced Materials, 32(23), 1907035. doi:10.1002/adma.201907035
García‐Fernández, A., Aznar, E., Martínez‐Máñez, R., & Sancenón, F. (2019). New Advances in In Vivo Applications of Gated Mesoporous Silica as Drug Delivery Nanocarriers. Small, 16(3), 1902242. doi:10.1002/smll.201902242
Doustkhah, E., Lin, J., Rostamnia, S., Len, C., Luque, R., Luo, X., … Ide, Y. (2018). Development of Sulfonic-Acid-Functionalized Mesoporous Materials: Synthesis and Catalytic Applications. Chemistry - A European Journal, 25(7), 1614-1635. doi:10.1002/chem.201802183
Möller, K., & Bein, T. (2019). Degradable Drug Carriers: Vanishing Mesoporous Silica Nanoparticles. Chemistry of Materials, 31(12), 4364-4378. doi:10.1021/acs.chemmater.9b00221
Paris, J. L., Colilla, M., Izquierdo-Barba, I., Manzano, M., & Vallet-Regí, M. (2017). Tuning mesoporous silica dissolution in physiological environments: a review. Journal of Materials Science, 52(15), 8761-8771. doi:10.1007/s10853-017-0787-1
Aznar, E., Oroval, M., Pascual, L., Murguía, J. R., Martínez-Máñez, R., & Sancenón, F. (2016). Gated Materials for On-Command Release of Guest Molecules. Chemical Reviews, 116(2), 561-718. doi:10.1021/acs.chemrev.5b00456
Sancenón, F., Pascual, L., Oroval, M., Aznar, E., & Martínez-Máñez, R. (2015). Gated Silica Mesoporous Materials in Sensing Applications. ChemistryOpen, 4(4), 418-437. doi:10.1002/open.201500053
Mekaru, H., Lu, J., & Tamanoi, F. (2015). Development of mesoporous silica-based nanoparticles with controlled release capability for cancer therapy. Advanced Drug Delivery Reviews, 95, 40-49. doi:10.1016/j.addr.2015.09.009
SLOWING, I., VIVEROESCOTO, J., WU, C., & LIN, V. (2008). Mesoporous silica nanoparticles as controlled release drug delivery and gene transfection carriers☆. Advanced Drug Delivery Reviews, 60(11), 1278-1288. doi:10.1016/j.addr.2008.03.012
Llopis-Lorente, A., Lozano-Torres, B., Bernardos, A., Martínez-Máñez, R., & Sancenón, F. (2017). Mesoporous silica materials for controlled delivery based on enzymes. Journal of Materials Chemistry B, 5(17), 3069-3083. doi:10.1039/c7tb00348j
Llopis-Lorente, A., Díez, P., Sánchez, A., Marcos, M. D., Sancenón, F., Martínez-Ruiz, P., … Martínez-Máñez, R. (2017). Interactive models of communication at the nanoscale using nanoparticles that talk to one another. Nature Communications, 8(1). doi:10.1038/ncomms15511
Luis, B., Llopis‐Lorente, A., Rincón, P., Gadea, J., Sancenón, F., Aznar, E., … Martínez‐Máñez, R. (2019). An Interactive Model of Communication between Abiotic Nanodevices and Microorganisms. Angewandte Chemie International Edition, 58(42), 14986-14990. doi:10.1002/anie.201908867
De la Torre, C., Domínguez-Berrocal, L., Murguía, J. R., Marcos, M. D., Martínez-Máñez, R., Bravo, J., & Sancenón, F. (2018). ϵ
-Polylysine-Capped Mesoporous Silica Nanoparticles as Carrier of the C
9h
Peptide to Induce Apoptosis in Cancer Cells. Chemistry - A European Journal, 24(8), 1890-1897. doi:10.1002/chem.201704161
Polo, L., Gómez-Cerezo, N., Aznar, E., Vivancos, J.-L., Sancenón, F., Arcos, D., … Martínez-Máñez, R. (2017). Molecular gates in mesoporous bioactive glasses for the treatment of bone tumors and infection. Acta Biomaterialia, 50, 114-126. doi:10.1016/j.actbio.2016.12.025
Ultimo, A., Giménez, C., Bartovsky, P., Aznar, E., Sancenón, F., Marcos, M. D., … Murguía, J. R. (2016). Targeting Innate Immunity with dsRNA-Conjugated Mesoporous Silica Nanoparticles Promotes Antitumor Effects on Breast Cancer Cells. Chemistry - A European Journal, 22(5), 1582-1586. doi:10.1002/chem.201504629
Slowing, I., Trewyn, B. G., & Lin, V. S.-Y. (2006). Effect of Surface Functionalization of MCM-41-Type Mesoporous Silica Nanoparticles on the Endocytosis by Human Cancer Cells. Journal of the American Chemical Society, 128(46), 14792-14793. doi:10.1021/ja0645943
Chung, T.-H., Wu, S.-H., Yao, M., Lu, C.-W., Lin, Y.-S., Hung, Y., … Huang, D.-M. (2007). The effect of surface charge on the uptake and biological function of mesoporous silica nanoparticles in 3T3-L1 cells and human mesenchymal stem cells. Biomaterials, 28(19), 2959-2966. doi:10.1016/j.biomaterials.2007.03.006
Nairi, V., Magnolia, S., Piludu, M., Nieddu, M., Caria, C. A., Sogos, V., … Salis, A. (2018). Mesoporous silica nanoparticles functionalized with hyaluronic acid. Effect of the biopolymer chain length on cell internalization. Colloids and Surfaces B: Biointerfaces, 168, 50-59. doi:10.1016/j.colsurfb.2018.02.019
Xie, X., Liao, J., Shao, X., Li, Q., & Lin, Y. (2017). The Effect of shape on Cellular Uptake of Gold Nanoparticles in the forms of Stars, Rods, and Triangles. Scientific Reports, 7(1). doi:10.1038/s41598-017-04229-z
Dos Santos, T., Varela, J., Lynch, I., Salvati, A., & Dawson, K. A. (2011). Effects of Transport Inhibitors on the Cellular Uptake of Carboxylated Polystyrene Nanoparticles in Different Cell Lines. PLoS ONE, 6(9), e24438. doi:10.1371/journal.pone.0024438
Kuhn, D. A., Vanhecke, D., Michen, B., Blank, F., Gehr, P., Petri-Fink, A., & Rothen-Rutishauser, B. (2014). Different endocytotic uptake mechanisms for nanoparticles in epithelial cells and macrophages. Beilstein Journal of Nanotechnology, 5, 1625-1636. doi:10.3762/bjnano.5.174
Lunov, O., Syrovets, T., Loos, C., Beil, J., Delacher, M., Tron, K., … Simmet, T. (2011). Differential Uptake of Functionalized Polystyrene Nanoparticles by Human Macrophages and a Monocytic Cell Line. ACS Nano, 5(3), 1657-1669. doi:10.1021/nn2000756
Calero, M., Gutiérrez, L., Salas, G., Luengo, Y., Lázaro, A., Acedo, P., … Villanueva, A. (2014). Efficient and safe internalization of magnetic iron oxide nanoparticles: Two fundamental requirements for biomedical applications. Nanomedicine: Nanotechnology, Biology and Medicine, 10(4), 733-743. doi:10.1016/j.nano.2013.11.010
Ebabe Elle, R., Rahmani, S., Lauret, C., Morena, M., Bidel, L. P. R., Boulahtouf, A., … Badia, E. (2016). Functionalized Mesoporous Silica Nanoparticle with Antioxidants as a New Carrier That Generates Lower Oxidative Stress Impact on Cells. Molecular Pharmaceutics, 13(8), 2647-2660. doi:10.1021/acs.molpharmaceut.6b00190
Heikkilä, T., Santos, H. A., Kumar, N., Murzin, D. Y., Salonen, J., Laaksonen, T., … Lehto, V.-P. (2010). Cytotoxicity study of ordered mesoporous silica MCM-41 and SBA-15 microparticles on Caco-2 cells. European Journal of Pharmaceutics and Biopharmaceutics, 74(3), 483-494. doi:10.1016/j.ejpb.2009.12.006
Kim, I.-Y., Joachim, E., Choi, H., & Kim, K. (2015). Toxicity of silica nanoparticles depends on size, dose, and cell type. Nanomedicine: Nanotechnology, Biology and Medicine, 11(6), 1407-1416. doi:10.1016/j.nano.2015.03.004
Tao, Z., Toms, B. B., Goodisman, J., & Asefa, T. (2009). Mesoporosity and Functional Group Dependent Endocytosis and Cytotoxicity of Silica Nanomaterials. Chemical Research in Toxicology, 22(11), 1869-1880. doi:10.1021/tx900276u
Lin, W., Huang, Y., Zhou, X.-D., & Ma, Y. (2006). In vitro toxicity of silica nanoparticles in human lung cancer cells. Toxicology and Applied Pharmacology, 217(3), 252-259. doi:10.1016/j.taap.2006.10.004
McCarthy, J., Inkielewicz-Stępniak, I., Corbalan, J. J., & Radomski, M. W. (2012). Mechanisms of Toxicity of Amorphous Silica Nanoparticles on Human Lung Submucosal Cells in Vitro: Protective Effects of Fisetin. Chemical Research in Toxicology, 25(10), 2227-2235. doi:10.1021/tx3002884
Kettiger, H., Sen Karaman, D., Schiesser, L., Rosenholm, J. M., & Huwyler, J. (2015). Comparative safety evaluation of silica-based particles. Toxicology in Vitro, 30(1), 355-363. doi:10.1016/j.tiv.2015.09.030
Kresge, C. T., Leonowicz, M. E., Roth, W. J., Vartuli, J. C., & Beck, J. S. (1992). Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature, 359(6397), 710-712. doi:10.1038/359710a0
Giménez, C., de la Torre, C., Gorbe, M., Aznar, E., Sancenón, F., Murguía, J. R., … Amorós, P. (2015). Gated Mesoporous Silica Nanoparticles for the Controlled Delivery of Drugs in Cancer Cells. Langmuir, 31(12), 3753-3762. doi:10.1021/acs.langmuir.5b00139
Gomes, A., Fernandes, E., & Lima, J. L. F. C. (2005). Fluorescence probes used for detection of reactive oxygen species. Journal of Biochemical and Biophysical Methods, 65(2-3), 45-80. doi:10.1016/j.jbbm.2005.10.003
Kalyanaraman, B., Darley-Usmar, V., Davies, K. J. A., Dennery, P. A., Forman, H. J., Grisham, M. B., … Ischiropoulos, H. (2012). Measuring reactive oxygen and nitrogen species with fluorescent probes: challenges and limitations. Free Radical Biology and Medicine, 52(1), 1-6. doi:10.1016/j.freeradbiomed.2011.09.030
Scaduto, R. C., & Grotyohann, L. W. (1999). Measurement of Mitochondrial Membrane Potential Using Fluorescent Rhodamine Derivatives. Biophysical Journal, 76(1), 469-477. doi:10.1016/s0006-3495(99)77214-0
Creed, S., & McKenzie, M. (2019). Measurement of Mitochondrial Membrane Potential with the Fluorescent Dye Tetramethylrhodamine Methyl Ester (TMRM). Cancer Metabolism, 69-76. doi:10.1007/978-1-4939-9027-6_5
Pisani, C., Rascol, E., Dorandeu, C., Charnay, C., Guari, Y., Chopineau, J., … Prat, O. (2017). Biocompatibility assessment of functionalized magnetic mesoporous silica nanoparticles in human HepaRG cells. Nanotoxicology, 11(7), 871-890. doi:10.1080/17435390.2017.1378749
Verma, A., & Stellacci, F. (2010). Effect of Surface Properties on Nanoparticleâ Cell Interactions. Small, 6(1), 12-21. doi:10.1002/smll.200901158
Yin Win, K., & Feng, S.-S. (2005). Effects of particle size and surface coating on cellular uptake of polymeric nanoparticles for oral delivery of anticancer drugs. Biomaterials, 26(15), 2713-2722. doi:10.1016/j.biomaterials.2004.07.050
REJMAN, J., OBERLE, V., ZUHORN, I. S., & HOEKSTRA, D. (2004). Size-dependent internalization of particles via the pathways of clathrin- and caveolae-mediated endocytosis. Biochemical Journal, 377(1), 159-169. doi:10.1042/bj20031253
Salatin, S., & Yari Khosroushahi, A. (2017). Overviews on the cellular uptake mechanism of polysaccharide colloidal nanoparticles. Journal of Cellular and Molecular Medicine, 21(9), 1668-1686. doi:10.1111/jcmm.13110
Vercauteren, D., Vandenbroucke, R. E., Jones, A. T., Rejman, J., Demeester, J., De Smedt, S. C., … Braeckmans, K. (2010). The Use of Inhibitors to Study Endocytic Pathways of Gene Carriers: Optimization and Pitfalls. Molecular Therapy, 18(3), 561-569. doi:10.1038/mt.2009.281
Dutta, D., & Donaldson, J. G. (2012). Search for inhibitors of endocytosis. Cellular Logistics, 2(4), 203-208. doi:10.4161/cl.23967
Gratton, S. E. A., Ropp, P. A., Pohlhaus, P. D., Luft, J. C., Madden, V. J., Napier, M. E., & DeSimone, J. M. (2008). The effect of particle design on cellular internalization pathways. Proceedings of the National Academy of Sciences, 105(33), 11613-11618. doi:10.1073/pnas.0801763105
Iversen, T., Frerker, N., & Sandvig, K. (2012). Uptake of ricinB-quantum dot nanoparticles by a macropinocytosis-like mechanism. Journal of Nanobiotechnology, 10(1), 33. doi:10.1186/1477-3155-10-33
Jambhrunkar, S., Qu, Z., Popat, A., Yang, J., Noonan, O., Acauan, L., … Karmakar, S. (2014). Effect of Surface Functionality of Silica Nanoparticles on Cellular Uptake and Cytotoxicity. Molecular Pharmaceutics, 11(10), 3642-3655. doi:10.1021/mp500385n
Zhang, H., Dunphy, D. R., Jiang, X., Meng, H., Sun, B., Tarn, D., … Brinker, C. J. (2012). Processing Pathway Dependence of Amorphous Silica Nanoparticle Toxicity: Colloidal vs Pyrolytic. Journal of the American Chemical Society, 134(38), 15790-15804. doi:10.1021/ja304907c
Murugadoss, S., Lison, D., Godderis, L., Van Den Brule, S., Mast, J., Brassinne, F., … Hoet, P. H. (2017). Toxicology of silica nanoparticles: an update. Archives of Toxicology, 91(9), 2967-3010. doi:10.1007/s00204-017-1993-y
CHEN, M., & VONMIKECZ, A. (2005). Formation of nucleoplasmic protein aggregates impairs nuclear function in response to SiO nanoparticles. Experimental Cell Research, 305(1), 51-62. doi:10.1016/j.yexcr.2004.12.021
Sun, L., Li, Y., Liu, X., Jin, M., Zhang, L., Du, Z., … Sun, Z. (2011). Cytotoxicity and mitochondrial damage caused by silica nanoparticles. Toxicology in Vitro, 25(8), 1619-1629. doi:10.1016/j.tiv.2011.06.012
[-]