GUO, J.-D., & WHITTINGHAM, M. S. (1993). TUNGSTEN OXIDES AND BRONZES: SYNTHESIS, DIFFUSION AND REACTIVITY. International Journal of Modern Physics B, 07(23n24), 4145-4164. doi:10.1142/s0217979293003607
Whittingham, M. S., Guo, J.-D., Chen, R., Chirayil, T., Janauer, G., & Zavalij, P. (1995). The hydrothermal synthesis of new oxide materials. Solid State Ionics, 75, 257-268. doi:10.1016/0167-2738(94)00220-m
Chen, J., Wang, H., Deng, J., Xu, C., & Wang, Y. (2018). Low-crystalline tungsten trioxide anode with superior electrochemical performance for flexible solid-state asymmetry supercapacitor. Journal of Materials Chemistry A, 6(19), 8986-8991. doi:10.1039/c8ta01323c
[+]
GUO, J.-D., & WHITTINGHAM, M. S. (1993). TUNGSTEN OXIDES AND BRONZES: SYNTHESIS, DIFFUSION AND REACTIVITY. International Journal of Modern Physics B, 07(23n24), 4145-4164. doi:10.1142/s0217979293003607
Whittingham, M. S., Guo, J.-D., Chen, R., Chirayil, T., Janauer, G., & Zavalij, P. (1995). The hydrothermal synthesis of new oxide materials. Solid State Ionics, 75, 257-268. doi:10.1016/0167-2738(94)00220-m
Chen, J., Wang, H., Deng, J., Xu, C., & Wang, Y. (2018). Low-crystalline tungsten trioxide anode with superior electrochemical performance for flexible solid-state asymmetry supercapacitor. Journal of Materials Chemistry A, 6(19), 8986-8991. doi:10.1039/c8ta01323c
Bartha, L., Kiss, A. B., & Szalay, T. (1995). Chemistry of tungsten oxide bronzes. International Journal of Refractory Metals and Hard Materials, 13(1-3), 77-91. doi:10.1016/0263-4368(94)00031-x
Tilley, R. J. D. (1995). The crystal chemistry of the higher tungsten oxides. International Journal of Refractory Metals and Hard Materials, 13(1-3), 93-109. doi:10.1016/0263-4368(95)00004-6
Michailovski, A., Krumeich, F., & Patzke, G. R. (2004). Hierarchical Growth of Mixed Ammonium Molybdenum/Tungsten Bronze Nanorods. Chemistry of Materials, 16(8), 1433-1440. doi:10.1021/cm0311731
Quan, H., Gao, Y., & Wang, W. (2020). Tungsten oxide-based visible light-driven photocatalysts: crystal and electronic structures and strategies for photocatalytic efficiency enhancement. Inorganic Chemistry Frontiers, 7(4), 817-838. doi:10.1039/c9qi01516g
Michailovski, A., & Patzke, G. R. (2006). Hydrothermal Synthesis of Molybdenum Oxide Based Materials: Strategy and Structural Chemistry. Chemistry - A European Journal, 12(36), 9122-9134. doi:10.1002/chem.200600977
Michailovski, A., Kiebach, R., Bensch, W., Grunwaldt, J.-D., Baiker, A., Komarneni, S., & Patzke, G. R. (2006). Morphological and Kinetic Studies on Hexagonal Tungstates. Chemistry of Materials, 19(2), 185-197. doi:10.1021/cm061020o
Kiebach, R., Pienack, N., Bensch, W., Grunwaldt, J.-D., Michailovski, A., Baiker, A., … Patzke, G. R. (2008). Hydrothermal Formation of W/Mo-Oxides: A Multidisciplinary Study of Growth and Shape. Chemistry of Materials, 20(9), 3022-3033. doi:10.1021/cm7028036
Magnéli, A., Blomberg, B., Reio, L., Saluste, E., Stjernholm, R., & Ehrensvärd, G. (1951). Contribution to the Knowledge of the Alkali Tungsten Bronzes. Acta Chemica Scandinavica, 5, 372-378. doi:10.3891/acta.chem.scand.05-0372
C. N. R. Rao and K.Biswas , Soft Chemistry Routes, in Essentials of Inorganic Materials Synthesis , ed. C. N. R. Rao and K. Biswas , John Wiley & Sons, Inc. , New Jersey , 2015 , ch. 10
Li, F., Qian, Y., & Stein, A. (2010). Template-Directed Synthesis and Organization of Shaped Oxide/Phosphate Nanoparticles. Chemistry of Materials, 22(10), 3226-3235. doi:10.1021/cm100478z
Gopalakrishnan, J. (1995). Chimie Douce Approaches to the Synthesis of Metastable Oxide Materials. Chemistry of Materials, 7(7), 1265-1275. doi:10.1021/cm00055a001
Stevenson, S., & Sermon, P. A. (1987). Promotion of nitrogen and hydrogen chemisorption and ammonia synthesis on alumina-supported hexagonal tungsten bronze, Kx WO3. Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases, 83(7), 2175. doi:10.1039/f19878302175
Szilágyi, I. M., Hange, F., Madarász, J., & Pokol, G. (2006). In situ HT-XRD Study on the Formation of Hexagonal Ammonium Tungsten Bronze by Partial Reduction of Ammonium Paratungstate Tetrahydrate. European Journal of Inorganic Chemistry, 2006(17), 3413-3418. doi:10.1002/ejic.200500875
Soriano, M. D., Concepción, P., Nieto, J. M. L., Cavani, F., Guidetti, S., & Trevisanut, C. (2011). Tungsten-Vanadium mixed oxides for the oxidehydration of glycerol into acrylic acid. Green Chemistry, 13(10), 2954. doi:10.1039/c1gc15622e
García-González, E., Soriano, M. D., Urones-Garrote, E., & López Nieto, J. M. (2014). On the origin of the spontaneous formation of nanocavities in hexagonal bronzes (W,V)O3. Dalton Trans., 43(39), 14644-14652. doi:10.1039/c4dt01465k
Chieregato, A., López Nieto, J. M., & Cavani, F. (2015). Mixed-oxide catalysts with vanadium as the key element for gas-phase reactions. Coordination Chemistry Reviews, 301-302, 3-23. doi:10.1016/j.ccr.2014.12.003
Cavani, F., Ballarini, N., & Cericola, A. (2007). Oxidative dehydrogenation of ethane and propane: How far from commercial implementation? Catalysis Today, 127(1-4), 113-131. doi:10.1016/j.cattod.2007.05.009
Gärtner, C. A., van Veen, A. C., & Lercher, J. A. (2013). Oxidative Dehydrogenation of Ethane: Common Principles and Mechanistic Aspects. ChemCatChem, 5(11), 3196-3217. doi:10.1002/cctc.201200966
Kube, P., Frank, B., Wrabetz, S., Kröhnert, J., Hävecker, M., Velasco-Vélez, J., … Trunschke, A. (2017). Functional Analysis of Catalysts for Lower Alkane Oxidation. ChemCatChem, 9(4), 573-585. doi:10.1002/cctc.201601194
Rozanska, X., Fortrie, R., & Sauer, J. (2014). Size-Dependent Catalytic Activity of Supported Vanadium Oxide Species: Oxidative Dehydrogenation of Propane. Journal of the American Chemical Society, 136(21), 7751-7761. doi:10.1021/ja503130z
Dinse, A., Schomäcker, R., & Bell, A. T. (2009). The role of lattice oxygen in the oxidative dehydrogenation of ethane on alumina-supported vanadium oxide. Physical Chemistry Chemical Physics, 11(29), 6119. doi:10.1039/b821131k
Blasco, T., Galli, A., López Nieto, J. M., & Trifiró, F. (1997). Oxidative Dehydrogenation of Ethane andn-Butane on VOx/Al2O3Catalysts. Journal of Catalysis, 169(1), 203-211. doi:10.1006/jcat.1997.1673
Argyle, M. D., Chen, K., Bell, A. T., & Iglesia, E. (2002). Effect of Catalyst Structure on Oxidative Dehydrogenation of Ethane and Propane on Alumina-Supported Vanadia. Journal of Catalysis, 208(1), 139-149. doi:10.1006/jcat.2002.3570
Al-Ghamdi, S., Volpe, M., Hossain, M. M., & de Lasa, H. (2013). VOx/c-Al2O3 catalyst for oxidative dehydrogenation of ethane to ethylene: Desorption kinetics and catalytic activity. Applied Catalysis A: General, 450, 120-130. doi:10.1016/j.apcata.2012.10.007
SOLSONA, B., VAZQUEZ, M., IVARS, F., DEJOZ, A., CONCEPCION, P., & LOPEZNIETO, J. (2007). Selective oxidation of propane and ethane on diluted Mo–V–Nb–Te mixed-oxide catalysts. Journal of Catalysis, 252(2), 271-280. doi:10.1016/j.jcat.2007.09.019
Botella, P., Dejoz, A., Abello, M. C., Vázquez, M. I., Arrúa, L., & López Nieto, J. M. (2009). Selective oxidation of ethane: Developing an orthorhombic phase in Mo–V–X (X=Nb, Sb, Te) mixed oxides. Catalysis Today, 142(3-4), 272-277. doi:10.1016/j.cattod.2008.09.016
Gaffney, A. M., & Mason, O. M. (2017). Ethylene production via Oxidative Dehydrogenation of Ethane using M1 catalyst. Catalysis Today, 285, 159-165. doi:10.1016/j.cattod.2017.01.020
HERACLEOUS, E., & LEMONIDOU, A. (2006). Ni–Nb–O mixed oxides as highly active and selective catalysts for ethene production via ethane oxidative dehydrogenation. Part I: Characterization and catalytic performance. Journal of Catalysis, 237(1), 162-174. doi:10.1016/j.jcat.2005.11.002
Ipsakis, D., Heracleous, E., Silvester, L., Bukur, D. B., & Lemonidou, A. A. (2017). Reduction and oxidation kinetic modeling of NiO-based oxygen transfer materials. Chemical Engineering Journal, 308, 840-852. doi:10.1016/j.cej.2016.09.114
Solsona, B., Concepción, P., López Nieto, J. M., Dejoz, A., Cecilia, J. A., Agouram, S., … Rodríguez Castellón, E. (2016). Nickel oxide supported on porous clay heterostructures as selective catalysts for the oxidative dehydrogenation of ethane. Catalysis Science & Technology, 6(10), 3419-3429. doi:10.1039/c5cy01811k
Zhu, H., Rosenfeld, D. C., Harb, M., Anjum, D. H., Hedhili, M. N., Ould-Chikh, S., & Basset, J.-M. (2016). Ni–M–O (M = Sn, Ti, W) Catalysts Prepared by a Dry Mixing Method for Oxidative Dehydrogenation of Ethane. ACS Catalysis, 6(5), 2852-2866. doi:10.1021/acscatal.6b00044
Carrero, C. A., Burt, S. P., Huang, F., Venegas, J. M., Love, A. M., Mueller, P., … Hermans, I. (2017). Supported two- and three-dimensional vanadium oxide species on the surface of β-SiC. Catalysis Science & Technology, 7(17), 3707-3714. doi:10.1039/c7cy01036b
Love, A. M., Carrero, C. A., Chieregato, A., Grant, J. T., Conrad, S., Verel, R., & Hermans, I. (2016). Elucidation of Anchoring and Restructuring Steps during Synthesis of Silica-Supported Vanadium Oxide Catalysts. Chemistry of Materials, 28(15), 5495-5504. doi:10.1021/acs.chemmater.6b02118
Grant, J. T., Carrero, C. A., Love, A. M., Verel, R., & Hermans, I. (2015). Enhanced Two-Dimensional Dispersion of Group V Metal Oxides on Silica. ACS Catalysis, 5(10), 5787-5793. doi:10.1021/acscatal.5b01679
Barman, S., Maity, N., Bhatte, K., Ould-Chikh, S., Dachwald, O., Haeßner, C., … Basset, J.-M. (2016). Single-Site VOx Moieties Generated on Silica by Surface Organometallic Chemistry: A Way To Enhance the Catalytic Activity in the Oxidative Dehydrogenation of Propane. ACS Catalysis, 6(9), 5908-5921. doi:10.1021/acscatal.6b01263
Maffia, G. J., Gaffney, A. M., & Mason, O. M. (2016). Techno-Economic Analysis of Oxidative Dehydrogenation Options. Topics in Catalysis, 59(17-18), 1573-1579. doi:10.1007/s11244-016-0677-9
Sanati, M., & Andersson, A. (1990). Ammoxtoation of toluene over TiO2(B)-supported vanadium oxide catalysts. Journal of Molecular Catalysis, 59(2), 233-255. doi:10.1016/0304-5102(90)85055-m
Soriano, M. D., Chieregato, A., Zamora, S., Basile, F., Cavani, F., & López Nieto, J. M. (2015). Promoted Hexagonal Tungsten Bronzes as Selective Catalysts in the Aerobic Transformation of Alcohols: Glycerol and Methanol. Topics in Catalysis, 59(2-4), 178-185. doi:10.1007/s11244-015-0440-7
SOLSONA, B., DEJOZ, A., GARCIA, T., CONCEPCION, P., NIETO, J., VAZQUEZ, M., & NAVARRO, M. (2006). Molybdenum–vanadium supported on mesoporous alumina catalysts for the oxidative dehydrogenation of ethane. Catalysis Today, 117(1-3), 228-233. doi:10.1016/j.cattod.2006.05.025
Spałek, T., Pietrzyk, P., & Sojka, Z. (2004). Application of the Genetic Algorithm Joint with the Powell Method to Nonlinear Least-Squares Fitting of Powder EPR Spectra. Journal of Chemical Information and Modeling, 45(1), 18-29. doi:10.1021/ci049863s
Pietrzyk, P., & Góra-Marek, K. (2016). Paramagnetic dioxovanadium(iv) molecules inside the channels of zeolite BEA – EPR screening of VO2 reactivity toward small gas-phase molecules. Physical Chemistry Chemical Physics, 18(14), 9490-9496. doi:10.1039/c6cp01046f
Shaikh, S. F., Kalanur, S. S., Mane, R. S., & Joo, O.-S. (2013). Monoclinic WO3 nanorods–rutile TiO2 nanoparticles core–shell interface for efficient DSSCs. Dalton Transactions, 42(28), 10085. doi:10.1039/c3dt50728a
Szilágyi, I. M., Madarász, J., Pokol, G., Király, P., Tárkányi, G., Saukko, S., … Varga-Josepovits, K. (2008). Stability and Controlled Composition of Hexagonal WO3. Chemistry of Materials, 20(12), 4116-4125. doi:10.1021/cm800668x
CHAN, S. (1985). Laser Raman characterization of tungsten oxide supported on alumina: Influence of calcination temperatures. Journal of Catalysis, 92(1), 1-10. doi:10.1016/0021-9517(85)90231-3
G. Deo , F. D.Hardcastle , M.Richards , A. M.Hirt and I. E.Wachs , ACS Symposium Series, in Novel Materials in Heterogeneous Catalysis , ed. R. Baker , et al. , American Chemical Society , Washington, DC , 1990 , p. 317
França, M. C. K., da Silva San Gil, R. A., & Eon, J.-G. (2003). Alumina-supported catalysts for propane oxidative dehydrogenation from mixed VXM(6−X)O19n− (M=W, Mo) hexametalate precursors. Catalysis Today, 78(1-4), 105-115. doi:10.1016/s0920-5861(02)00302-4
Catana, G., Rao, R. R., Weckhuysen, B. M., Van Der Voort, P., Vansant, E., & Schoonheydt, R. A. (1998). Supported Vanadium Oxide Catalysts: Quantitative Spectroscopy, Preferential Adsorption of V4+/5+, and Al2O3 Coating of Zeolite Y. The Journal of Physical Chemistry B, 102(41), 8005-8012. doi:10.1021/jp981482s
Brückner, A. (2010). In situ electron paramagnetic resonance: a unique tool for analyzing structure–reactivity relationships in heterogeneous catalysis. Chemical Society Reviews, 39(12), 4673. doi:10.1039/b919541f
Brückner, A. (2006). Spin–spin exchange in vanadium-containing catalysts studied by in situ-EPR: a sensitive monitor for disorder-related activity. Topics in Catalysis, 38(1-3), 133-139. doi:10.1007/s11244-006-0078-6
Strassberger, Z., Ramos-Fernandez, E. V., Boonstra, A., Jorna, R., Tanase, S., & Rothenberg, G. (2013). Synthesis, characterization and testing of a new V2O5/Al2O3–MgO catalyst for butane dehydrogenation and limonene oxidation. Dalton Transactions, 42(15), 5546. doi:10.1039/c3dt32954b
Kompio, P. G. W. A., Brückner, A., Hipler, F., Auer, G., Löffler, E., & Grünert, W. (2012). A new view on the relations between tungsten and vanadium in V2O5WO3/TiO2 catalysts for the selective reduction of NO with NH3. Journal of Catalysis, 286, 237-247. doi:10.1016/j.jcat.2011.11.008
Concepción, P., Knözinger, H., López Nieto, J. M., & Martínez-Arias, A. (2002). Characterization of Supported Vanadium Oxide Catalysts. Nature of the Vanadium Species in Reduced Catalysts. The Journal of Physical Chemistry B, 106(10), 2574-2582. doi:10.1021/jp010918s
Silversmit, G., Depla, D., Poelman, H., Marin, G. B., & De Gryse, R. (2004). Determination of the V2p XPS binding energies for different vanadium oxidation states (V5+ to V0+). Journal of Electron Spectroscopy and Related Phenomena, 135(2-3), 167-175. doi:10.1016/j.elspec.2004.03.004
Suchorski, Y., Rihko-Struckmann, L., Klose, F., Ye, Y., Alandjiyska, M., Sundmacher, K., & Weiss, H. (2005). Evolution of oxidation states in vanadium-based catalysts under conventional XPS conditions. Applied Surface Science, 249(1-4), 231-237. doi:10.1016/j.apsusc.2004.11.083
KLOSE, F., WOLFF, T., LORENZ, H., SEIDELMORGENSTERN, A., SUCHORSKI, Y., PIORKOWSKA, M., & WEISS, H. (2007). Active species on γ-alumina-supported vanadia catalysts: Nature and reducibility. Journal of Catalysis, 247(2), 176-193. doi:10.1016/j.jcat.2007.01.013
Hess, C., Tzolova-Müller, G., & Herbert, R. (2007). The Influence of Water on the Dispersion of Vanadia Supported on Silica SBA-15: A Combined XPS and Raman Study. The Journal of Physical Chemistry C, 111(26), 9471-9479. doi:10.1021/jp0713920
Liu, Y., Shrestha, S., & Mustain, W. E. (2012). Synthesis of Nanosize Tungsten Oxide and Its Evaluation as an Electrocatalyst Support for Oxygen Reduction in Acid Media. ACS Catalysis, 2(3), 456-463. doi:10.1021/cs200657w
Nieto, J. M. L. (2006). The selective oxidative activation of light alkanes. From supported vanadia to multicomponent bulk V-containing catalysts. Topics in Catalysis, 41(1-4), 3-15. doi:10.1007/s11244-006-0088-4
[-]