- -

Growing modulator agents for the synthesis of Al-MOF-type materials based on assembled 1D structural sub-domains

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Growing modulator agents for the synthesis of Al-MOF-type materials based on assembled 1D structural sub-domains

Mostrar el registro completo del ítem

Moreno, JM.; Velty, A.; Vidal Moya, JA.; Díaz Morales, UM.; Corma Canós, A. (2018). Growing modulator agents for the synthesis of Al-MOF-type materials based on assembled 1D structural sub-domains. Dalton Transactions. 47(15):5492-5502. https://doi.org/10.1039/C8DT00394G

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/165401

Ficheros en el ítem

Metadatos del ítem

Título: Growing modulator agents for the synthesis of Al-MOF-type materials based on assembled 1D structural sub-domains
Autor: Moreno, José María Velty, Alexandra Vidal Moya, José Alejandro DÍAZ MORALES, URBANO MANUEL Corma Canós, Avelino
Entidad UPV: Universitat Politècnica de València. Departamento de Química - Departament de Química
Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química
Fecha difusión:
Resumen:
[EN] Novel aluminium MOF-type materials structured by 1D subdomains, such as organic-inorganic nanoribbons, were synthesized by modifying the conditions of solvothermal synthesis and the nature of the solvents in the ...[+]
Derechos de uso: Reserva de todos los derechos
Fuente:
Dalton Transactions. (issn: 1477-9226 )
DOI: 10.1039/C8DT00394G
Editorial:
The Royal Society of Chemistry
Versión del editor: https://doi.org/10.1039/C8DT00394G
Código del Proyecto:
info:eu-repo/grantAgreement/EC/H2020/671093/EU/MATching zeolite SYNthesis with CATalytic activity/
info:eu-repo/grantAgreement/MINECO//MAT2014-52085-C2-1-P/ES/NUEVOS MATERIALES CON DIFERENTES CENTROS ACTIVOS INCORPORADOS EN POSICIONES ESPECIFICAS DE LA RED Y SU APLICACION PARA PROCESOS CATALITICOS MULTI-ETAPA Y NANOTECNOLOGICOS/
info:eu-repo/grantAgreement/MINECO//SEV-2016-0683/
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/MAT2017-82288-C2-1-P/ES/MATERIALES HIBRIDOS MULTIFUNCIONALES BASADOS EN NANO-UNIDADES ESTRUCTURALES ACTIVAS/
Agradecimientos:
The authors are grateful for financial support from the Spanish Government under MAT2014-52085-C2-1-P, MAT2017-82288-C2-1-P and Severo Ochoa Excellence Program SEV-2016-0683. J. M. M. thanks predoctoral fellowships from ...[+]
Tipo: Artículo

References

Li, B., Wen, H.-M., Wang, H., Wu, H., Tyagi, M., Yildirim, T., … Chen, B. (2014). A Porous Metal–Organic Framework with Dynamic Pyrimidine Groups Exhibiting Record High Methane Storage Working Capacity. Journal of the American Chemical Society, 136(17), 6207-6210. doi:10.1021/ja501810r

Getman, R. B., Bae, Y.-S., Wilmer, C. E., & Snurr, R. Q. (2011). Review and Analysis of Molecular Simulations of Methane, Hydrogen, and Acetylene Storage in Metal–Organic Frameworks. Chemical Reviews, 112(2), 703-723. doi:10.1021/cr200217c

Suh, M. P., Park, H. J., Prasad, T. K., & Lim, D.-W. (2011). Hydrogen Storage in Metal–Organic Frameworks. Chemical Reviews, 112(2), 782-835. doi:10.1021/cr200274s [+]
Li, B., Wen, H.-M., Wang, H., Wu, H., Tyagi, M., Yildirim, T., … Chen, B. (2014). A Porous Metal–Organic Framework with Dynamic Pyrimidine Groups Exhibiting Record High Methane Storage Working Capacity. Journal of the American Chemical Society, 136(17), 6207-6210. doi:10.1021/ja501810r

Getman, R. B., Bae, Y.-S., Wilmer, C. E., & Snurr, R. Q. (2011). Review and Analysis of Molecular Simulations of Methane, Hydrogen, and Acetylene Storage in Metal–Organic Frameworks. Chemical Reviews, 112(2), 703-723. doi:10.1021/cr200217c

Suh, M. P., Park, H. J., Prasad, T. K., & Lim, D.-W. (2011). Hydrogen Storage in Metal–Organic Frameworks. Chemical Reviews, 112(2), 782-835. doi:10.1021/cr200274s

Liu, J., Chen, L., Cui, H., Zhang, J., Zhang, L., & Su, C.-Y. (2014). Applications of metal–organic frameworks in heterogeneous supramolecular catalysis. Chem. Soc. Rev., 43(16), 6011-6061. doi:10.1039/c4cs00094c

Chughtai, A. H., Ahmad, N., Younus, H. A., Laypkov, A., & Verpoort, F. (2015). Metal–organic frameworks: versatile heterogeneous catalysts for efficient catalytic organic transformations. Chemical Society Reviews, 44(19), 6804-6849. doi:10.1039/c4cs00395k

Stavila, V., Talin, A. A., & Allendorf, M. D. (2014). MOF-based electronic and opto-electronic devices. Chem. Soc. Rev., 43(16), 5994-6010. doi:10.1039/c4cs00096j

Díaz, U., & Corma, A. (2016). Ordered covalent organic frameworks, COFs and PAFs. From preparation to application. Coordination Chemistry Reviews, 311, 85-124. doi:10.1016/j.ccr.2015.12.010

Li, M., Schnablegger, H., & Mann, S. (1999). Coupled synthesis and self-assembly of nanoparticles to give structures with controlled organization. Nature, 402(6760), 393-395. doi:10.1038/46509

Inagaki, S., Guan, S., Ohsuna, T., & Terasaki, O. (2002). An ordered mesoporous organosilica hybrid material with a crystal-like wall structure. Nature, 416(6878), 304-307. doi:10.1038/416304a

Ding, S.-Y., & Wang, W. (2013). Covalent organic frameworks (COFs): from design to applications. Chem. Soc. Rev., 42(2), 548-568. doi:10.1039/c2cs35072f

Corma, A., García, H., & Llabrés i Xamena, F. X. (2010). Engineering Metal Organic Frameworks for Heterogeneous Catalysis. Chemical Reviews, 110(8), 4606-4655. doi:10.1021/cr9003924

Serre, C., Millange, F., Thouvenot, C., Noguès, M., Marsolier, G., Louër, D., & Férey, G. (2002). Very Large Breathing Effect in the First Nanoporous Chromium(III)-Based Solids: MIL-53 or CrIII(OH)·{O2C−C6H4−CO2}·{HO2C−C6H4−CO2H}x·H2Oy. Journal of the American Chemical Society, 124(45), 13519-13526. doi:10.1021/ja0276974

Alberti, G., Costantino, U., Allulli, S., & Tomassini, N. (1978). Crystalline Zr(R-PO3)2 and Zr(R-OPO3)2 compounds (R = organic radical). Journal of Inorganic and Nuclear Chemistry, 40(6), 1113-1117. doi:10.1016/0022-1902(78)80520-x

Corma, A., Fornes, V., Pergher, S. B., Maesen, T. L. M., & Buglass, J. G. (1998). Delaminated zeolite precursors as selective acidic catalysts. Nature, 396(6709), 353-356. doi:10.1038/24592

González-Arellano, C., Corma, A., Iglesias, M., & Sánchez, F. (2004). Pd(II)-Schiff Base Complexes Heterogenised on MCM-41 and Delaminated Zeolites as Efficient and Recyclable Catalysts for the Heck Reaction. Advanced Synthesis & Catalysis, 346(13-15), 1758-1764. doi:10.1002/adsc.200404119

Opanasenko, M., Shamzhy, M., Yu, F., Zhou, W., Morris, R. E., & Čejka, J. (2016). Zeolite-derived hybrid materials with adjustable organic pillars. Chemical Science, 7(6), 3589-3601. doi:10.1039/c5sc04602e

Bellussi, G., Millini, R., Montanari, E., Carati, A., Rizzo, C., Parker, W. O., … Zanardi, S. (2012). A highly crystalline microporous hybrid organic–inorganic aluminosilicate resembling the AFI-type zeolite. Chemical Communications, 48(59), 7356. doi:10.1039/c2cc33417h

Bellussi, G., Carati, A., Di Paola, E., Millini, R., Parker, W. O., Rizzo, C., & Zanardi, S. (2008). Crystalline hybrid organic–inorganic alumino-silicates. Microporous and Mesoporous Materials, 113(1-3), 252-260. doi:10.1016/j.micromeso.2007.11.024

Gomez, G. E., Bernini, M. C., Brusau, E. V., Narda, G. E., Vega, D., Kaczmarek, A. M., … Nazzarro, M. (2015). Layered exfoliable crystalline materials based on Sm-, Eu- and Eu/Gd-2-phenylsuccinate frameworks. Crystal structure, topology and luminescence properties. Dalton Transactions, 44(7), 3417-3429. doi:10.1039/c4dt02844a

Amo-Ochoa, P., Welte, L., González-Prieto, R., Sanz Miguel, P. J., Gómez-García, C. J., Mateo-Martí, E., … Zamora, F. (2010). Single layers of a multifunctional laminar Cu(i,ii) coordination polymer. Chemical Communications, 46(19), 3262. doi:10.1039/b919647a

Rodenas, T., Luz, I., Prieto, G., Seoane, B., Miro, H., Corma, A., … Gascon, J. (2014). Metal–organic framework nanosheets in polymer composite materials for gas separation. Nature Materials, 14(1), 48-55. doi:10.1038/nmat4113

Cai, G., & Jiang, H.-L. (2016). A Modulator-Induced Defect-Formation Strategy to Hierarchically Porous Metal-Organic Frameworks with High Stability. Angewandte Chemie International Edition, 56(2), 563-567. doi:10.1002/anie.201610914

Garibay, S. J., & Cohen, S. M. (2010). Isoreticular synthesis and modification of frameworks with the UiO-66 topology. Chemical Communications, 46(41), 7700. doi:10.1039/c0cc02990d

Senkovska, I., Hoffmann, F., Fröba, M., Getzschmann, J., Böhlmann, W., & Kaskel, S. (2009). New highly porous aluminium based metal-organic frameworks: Al(OH)(ndc) (ndc=2,6-naphthalene dicarboxylate) and Al(OH)(bpdc) (bpdc=4,4′-biphenyl dicarboxylate). Microporous and Mesoporous Materials, 122(1-3), 93-98. doi:10.1016/j.micromeso.2009.02.020

Carson, C. G., Hardcastle, K., Schwartz, J., Liu, X., Hoffmann, C., Gerhardt, R. A., & Tannenbaum, R. (2009). Synthesis and Structure Characterization of Copper Terephthalate Metal-Organic Frameworks. European Journal of Inorganic Chemistry, 2009(16), 2338-2343. doi:10.1002/ejic.200801224

Yang, Q., Vaesen, S., Vishnuvarthan, M., Ragon, F., Serre, C., Vimont, A., … Maurin, G. (2012). Probing the adsorption performance of the hybrid porous MIL-68(Al): a synergic combination of experimental and modelling tools. Journal of Materials Chemistry, 22(20), 10210. doi:10.1039/c2jm15609a

García-García, P., Moreno, J. M., Díaz, U., Bruix, M., & Corma, A. (2016). Organic–inorganic supramolecular solid catalyst boosts organic reactions in water. Nature Communications, 7(1). doi:10.1038/ncomms10835

Moreno, J. M., Navarro, I., Díaz, U., Primo, J., & Corma, A. (2016). Single-Layered Hybrid Materials Based on 1D Associated Metalorganic Nanoribbons for Controlled Release of Pheromones. Angewandte Chemie International Edition, 55(37), 11026-11030. doi:10.1002/anie.201602215

Ben-Cherif, W., Gharbi, R., Sebai, H., Dridi, D., Boughattas, N. A., & Ben-Attia, M. (2010). Neuropharmacological screening of two 1,5-benzodiazepine compounds in mice. Comptes Rendus Biologies, 333(3), 214-219. doi:10.1016/j.crvi.2009.09.015

Ha, S. K., Shobha, D., Moon, E., Chari, M. A., Mukkanti, K., Kim, S.-H., … Kim, S. Y. (2010). Anti-neuroinflammatory activity of 1,5-benzodiazepine derivatives. Bioorganic & Medicinal Chemistry Letters, 20(13), 3969-3971. doi:10.1016/j.bmcl.2010.04.133

Wang, L.-Z., Li, X.-Q., & An, Y.-S. (2015). 1,5-Benzodiazepine derivatives as potential antimicrobial agents: design, synthesis, biological evaluation, and structure–activity relationships. Organic & Biomolecular Chemistry, 13(19), 5497-5509. doi:10.1039/c5ob00655d

Huang, Y., Khoury, K., Chanas, T., & Dömling, A. (2012). Multicomponent Synthesis of Diverse 1,4-Benzodiazepine Scaffolds. Organic Letters, 14(23), 5916-5919. doi:10.1021/ol302837h

Delpuech, J. J., Khaddar, M. R., Peguy, A. A., & Rubini, P. R. (1975). Octahedral and tetrahedral solvates of the aluminum cation. Study of the exchange of free and bound organophosphorus ligands by nuclear magnetic resonance spectroscopy. Journal of the American Chemical Society, 97(12), 3373-3379. doi:10.1021/ja00845a016

Gascon, J., Corma, A., Kapteijn, F., & Llabrés i Xamena, F. X. (2013). Metal Organic Framework Catalysis: Quo vadis? ACS Catalysis, 4(2), 361-378. doi:10.1021/cs400959k

García-García, P., Müller, M., & Corma, A. (2014). MOF catalysis in relation to their homogeneous counterparts and conventional solid catalysts. Chemical Science, 5(8), 2979. doi:10.1039/c4sc00265b

Dai-Il, J., Tae-wonchoi, C., Yun-Young, K., In-Shik, K., You-Mi, P., Yong-Gyun, L., & Doo-Hee, J. (1999). Synthesis Of 1,5-Benzodiazepine Derivatives. Synthetic Communications, 29(11), 1941-1951. doi:10.1080/00397919908086183

Pozarentzi, M., Stephanidou-Stephanatou, J., & Tsoleridis, C. A. (2002). An efficient method for the synthesis of 1,5-benzodiazepine derivatives under microwave irradiation without solvent. Tetrahedron Letters, 43(9), 1755-1758. doi:10.1016/s0040-4039(02)00115-6

Varala, R., Enugala, R., & Adapa, S. R. (2007). p-nitrobenzoic acid promoted synthesis of 1,5-benzodiazepine derivatives. Journal of the Brazilian Chemical Society, 18(2). doi:10.1590/s0103-50532007000200008

Reddy, B. M., & Sreekanth, P. M. (2003). An efficient synthesis of 1,5-benzodiazepine derivatives catalyzed by a solid superacid sulfated zirconia. Tetrahedron Letters, 44(24), 4447-4449. doi:10.1016/s0040-4039(03)01034-7

Tajbakhsh, M., Heravi, M. M., Mohajerani, B., & Ahmadi, A. N. (2006). Solid acid catalytic synthesis of 1,5-benzodiazepines: A highly improved protocol. Journal of Molecular Catalysis A: Chemical, 247(1-2), 213-215. doi:10.1016/j.molcata.2005.11.033

Majid, S. A., Khanday, W. A., & Tomar, R. (2012). Synthesis of 1,5-Benzodiazepine and Its Derivatives by Condensation Reaction Using H-MCM-22 as Catalyst. Journal of Biomedicine and Biotechnology, 2012, 1-6. doi:10.1155/2012/510650

Climent, M. J., Corma, A., Iborra, S., & Santos, L. L. (2009). Multisite Solid Catalyst for Cascade Reactions: The Direct Synthesis of Benzodiazepines from Nitro Compounds. Chemistry - A European Journal, 15(35), 8834-8841. doi:10.1002/chem.200900492

Afzal Pasha, M., & Puttaramegowda Jayashankara, V. (2006). Synthesis of 1,5-Benzodiazepine Derivatives Catalysed by Zinc Chloride. HETEROCYCLES, 68(5), 1017. doi:10.3987/com-05-10647

Balakrishna, M. ., & Kaboudin, B. (2001). A simple and new method for the synthesis of 1,5-benzodiazepine derivatives on a solid surface. Tetrahedron Letters, 42(6), 1127-1129. doi:10.1016/s0040-4039(00)02168-7

Adharvana Chari, M., & Syamasundar, K. (2005). Polymer (PVP) supported ferric chloride: an efficient and recyclable heterogeneous catalyst for high yield synthesis of 1,5-benzodiazepine derivatives under solvent free conditions and microwave irradiation. Catalysis Communications, 6(1), 67-70. doi:10.1016/j.catcom.2004.10.009

Timofeeva, M. N., Prikhod’ko, S. A., Makarova, K. N., Malyshev, M. E., Panchenko, V. N., Ayupov, A. B., & Jhung, S. H. (2017). Iron-containing materials as catalysts for the synthesis of 1,5-benzodiazepine from 1,2-phenylenediamine and acetone. Reaction Kinetics, Mechanisms and Catalysis, 121(2), 689-699. doi:10.1007/s11144-017-1190-2

Fazaeli, R., & Aliyan, H. (2007). Clay (KSF and K10)-supported heteropoly acids: Friendly, efficient, reusable and heterogeneous catalysts for high yield synthesis of 1,5-benzodiazepine derivatives both in solution and under solvent-free conditions. Applied Catalysis A: General, 331, 78-83. doi:10.1016/j.apcata.2007.07.030

Huang, G., Yang, Q., Xu, Q., Yu, S.-H., & Jiang, H.-L. (2016). Polydimethylsiloxane Coating for a Palladium/MOF Composite: Highly Improved Catalytic Performance by Surface Hydrophobization. Angewandte Chemie International Edition, 55(26), 7379-7383. doi:10.1002/anie.201600497

Jeganathan, M., & Pitchumani, K. (2014). Solvent-Free Syntheses of 1,5-Benzodiazepines Using HY Zeolite as a Green Solid Acid Catalyst. ACS Sustainable Chemistry & Engineering, 2(5), 1169-1176. doi:10.1021/sc400560v

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem