Li, B., Wen, H.-M., Wang, H., Wu, H., Tyagi, M., Yildirim, T., … Chen, B. (2014). A Porous Metal–Organic Framework with Dynamic Pyrimidine Groups Exhibiting Record High Methane Storage Working Capacity. Journal of the American Chemical Society, 136(17), 6207-6210. doi:10.1021/ja501810r
Getman, R. B., Bae, Y.-S., Wilmer, C. E., & Snurr, R. Q. (2011). Review and Analysis of Molecular Simulations of Methane, Hydrogen, and Acetylene Storage in Metal–Organic Frameworks. Chemical Reviews, 112(2), 703-723. doi:10.1021/cr200217c
Suh, M. P., Park, H. J., Prasad, T. K., & Lim, D.-W. (2011). Hydrogen Storage in Metal–Organic Frameworks. Chemical Reviews, 112(2), 782-835. doi:10.1021/cr200274s
[+]
Li, B., Wen, H.-M., Wang, H., Wu, H., Tyagi, M., Yildirim, T., … Chen, B. (2014). A Porous Metal–Organic Framework with Dynamic Pyrimidine Groups Exhibiting Record High Methane Storage Working Capacity. Journal of the American Chemical Society, 136(17), 6207-6210. doi:10.1021/ja501810r
Getman, R. B., Bae, Y.-S., Wilmer, C. E., & Snurr, R. Q. (2011). Review and Analysis of Molecular Simulations of Methane, Hydrogen, and Acetylene Storage in Metal–Organic Frameworks. Chemical Reviews, 112(2), 703-723. doi:10.1021/cr200217c
Suh, M. P., Park, H. J., Prasad, T. K., & Lim, D.-W. (2011). Hydrogen Storage in Metal–Organic Frameworks. Chemical Reviews, 112(2), 782-835. doi:10.1021/cr200274s
Liu, J., Chen, L., Cui, H., Zhang, J., Zhang, L., & Su, C.-Y. (2014). Applications of metal–organic frameworks in heterogeneous supramolecular catalysis. Chem. Soc. Rev., 43(16), 6011-6061. doi:10.1039/c4cs00094c
Chughtai, A. H., Ahmad, N., Younus, H. A., Laypkov, A., & Verpoort, F. (2015). Metal–organic frameworks: versatile heterogeneous catalysts for efficient catalytic organic transformations. Chemical Society Reviews, 44(19), 6804-6849. doi:10.1039/c4cs00395k
Stavila, V., Talin, A. A., & Allendorf, M. D. (2014). MOF-based electronic and opto-electronic devices. Chem. Soc. Rev., 43(16), 5994-6010. doi:10.1039/c4cs00096j
Díaz, U., & Corma, A. (2016). Ordered covalent organic frameworks, COFs and PAFs. From preparation to application. Coordination Chemistry Reviews, 311, 85-124. doi:10.1016/j.ccr.2015.12.010
Li, M., Schnablegger, H., & Mann, S. (1999). Coupled synthesis and self-assembly of nanoparticles to give structures with controlled organization. Nature, 402(6760), 393-395. doi:10.1038/46509
Inagaki, S., Guan, S., Ohsuna, T., & Terasaki, O. (2002). An ordered mesoporous organosilica hybrid material with a crystal-like wall structure. Nature, 416(6878), 304-307. doi:10.1038/416304a
Ding, S.-Y., & Wang, W. (2013). Covalent organic frameworks (COFs): from design to applications. Chem. Soc. Rev., 42(2), 548-568. doi:10.1039/c2cs35072f
Corma, A., García, H., & Llabrés i Xamena, F. X. (2010). Engineering Metal Organic Frameworks for Heterogeneous Catalysis. Chemical Reviews, 110(8), 4606-4655. doi:10.1021/cr9003924
Serre, C., Millange, F., Thouvenot, C., Noguès, M., Marsolier, G., Louër, D., & Férey, G. (2002). Very Large Breathing Effect in the First Nanoporous Chromium(III)-Based Solids: MIL-53 or CrIII(OH)·{O2C−C6H4−CO2}·{HO2C−C6H4−CO2H}x·H2Oy. Journal of the American Chemical Society, 124(45), 13519-13526. doi:10.1021/ja0276974
Alberti, G., Costantino, U., Allulli, S., & Tomassini, N. (1978). Crystalline Zr(R-PO3)2 and Zr(R-OPO3)2 compounds (R = organic radical). Journal of Inorganic and Nuclear Chemistry, 40(6), 1113-1117. doi:10.1016/0022-1902(78)80520-x
Corma, A., Fornes, V., Pergher, S. B., Maesen, T. L. M., & Buglass, J. G. (1998). Delaminated zeolite precursors as selective acidic catalysts. Nature, 396(6709), 353-356. doi:10.1038/24592
González-Arellano, C., Corma, A., Iglesias, M., & Sánchez, F. (2004). Pd(II)-Schiff Base Complexes Heterogenised on MCM-41 and Delaminated Zeolites as Efficient and Recyclable Catalysts for the Heck Reaction. Advanced Synthesis & Catalysis, 346(13-15), 1758-1764. doi:10.1002/adsc.200404119
Opanasenko, M., Shamzhy, M., Yu, F., Zhou, W., Morris, R. E., & Čejka, J. (2016). Zeolite-derived hybrid materials with adjustable organic pillars. Chemical Science, 7(6), 3589-3601. doi:10.1039/c5sc04602e
Bellussi, G., Millini, R., Montanari, E., Carati, A., Rizzo, C., Parker, W. O., … Zanardi, S. (2012). A highly crystalline microporous hybrid organic–inorganic aluminosilicate resembling the AFI-type zeolite. Chemical Communications, 48(59), 7356. doi:10.1039/c2cc33417h
Bellussi, G., Carati, A., Di Paola, E., Millini, R., Parker, W. O., Rizzo, C., & Zanardi, S. (2008). Crystalline hybrid organic–inorganic alumino-silicates. Microporous and Mesoporous Materials, 113(1-3), 252-260. doi:10.1016/j.micromeso.2007.11.024
Gomez, G. E., Bernini, M. C., Brusau, E. V., Narda, G. E., Vega, D., Kaczmarek, A. M., … Nazzarro, M. (2015). Layered exfoliable crystalline materials based on Sm-, Eu- and Eu/Gd-2-phenylsuccinate frameworks. Crystal structure, topology and luminescence properties. Dalton Transactions, 44(7), 3417-3429. doi:10.1039/c4dt02844a
Amo-Ochoa, P., Welte, L., González-Prieto, R., Sanz Miguel, P. J., Gómez-García, C. J., Mateo-Martí, E., … Zamora, F. (2010). Single layers of a multifunctional laminar Cu(i,ii) coordination polymer. Chemical Communications, 46(19), 3262. doi:10.1039/b919647a
Rodenas, T., Luz, I., Prieto, G., Seoane, B., Miro, H., Corma, A., … Gascon, J. (2014). Metal–organic framework nanosheets in polymer composite materials for gas separation. Nature Materials, 14(1), 48-55. doi:10.1038/nmat4113
Cai, G., & Jiang, H.-L. (2016). A Modulator-Induced Defect-Formation Strategy to Hierarchically Porous Metal-Organic Frameworks with High Stability. Angewandte Chemie International Edition, 56(2), 563-567. doi:10.1002/anie.201610914
Garibay, S. J., & Cohen, S. M. (2010). Isoreticular synthesis and modification of frameworks with the UiO-66 topology. Chemical Communications, 46(41), 7700. doi:10.1039/c0cc02990d
Senkovska, I., Hoffmann, F., Fröba, M., Getzschmann, J., Böhlmann, W., & Kaskel, S. (2009). New highly porous aluminium based metal-organic frameworks: Al(OH)(ndc) (ndc=2,6-naphthalene dicarboxylate) and Al(OH)(bpdc) (bpdc=4,4′-biphenyl dicarboxylate). Microporous and Mesoporous Materials, 122(1-3), 93-98. doi:10.1016/j.micromeso.2009.02.020
Carson, C. G., Hardcastle, K., Schwartz, J., Liu, X., Hoffmann, C., Gerhardt, R. A., & Tannenbaum, R. (2009). Synthesis and Structure Characterization of Copper Terephthalate Metal-Organic Frameworks. European Journal of Inorganic Chemistry, 2009(16), 2338-2343. doi:10.1002/ejic.200801224
Yang, Q., Vaesen, S., Vishnuvarthan, M., Ragon, F., Serre, C., Vimont, A., … Maurin, G. (2012). Probing the adsorption performance of the hybrid porous MIL-68(Al): a synergic combination of experimental and modelling tools. Journal of Materials Chemistry, 22(20), 10210. doi:10.1039/c2jm15609a
García-García, P., Moreno, J. M., Díaz, U., Bruix, M., & Corma, A. (2016). Organic–inorganic supramolecular solid catalyst boosts organic reactions in water. Nature Communications, 7(1). doi:10.1038/ncomms10835
Moreno, J. M., Navarro, I., Díaz, U., Primo, J., & Corma, A. (2016). Single-Layered Hybrid Materials Based on 1D Associated Metalorganic Nanoribbons for Controlled Release of Pheromones. Angewandte Chemie International Edition, 55(37), 11026-11030. doi:10.1002/anie.201602215
Ben-Cherif, W., Gharbi, R., Sebai, H., Dridi, D., Boughattas, N. A., & Ben-Attia, M. (2010). Neuropharmacological screening of two 1,5-benzodiazepine compounds in mice. Comptes Rendus Biologies, 333(3), 214-219. doi:10.1016/j.crvi.2009.09.015
Ha, S. K., Shobha, D., Moon, E., Chari, M. A., Mukkanti, K., Kim, S.-H., … Kim, S. Y. (2010). Anti-neuroinflammatory activity of 1,5-benzodiazepine derivatives. Bioorganic & Medicinal Chemistry Letters, 20(13), 3969-3971. doi:10.1016/j.bmcl.2010.04.133
Wang, L.-Z., Li, X.-Q., & An, Y.-S. (2015). 1,5-Benzodiazepine derivatives as potential antimicrobial agents: design, synthesis, biological evaluation, and structure–activity relationships. Organic & Biomolecular Chemistry, 13(19), 5497-5509. doi:10.1039/c5ob00655d
Huang, Y., Khoury, K., Chanas, T., & Dömling, A. (2012). Multicomponent Synthesis of Diverse 1,4-Benzodiazepine Scaffolds. Organic Letters, 14(23), 5916-5919. doi:10.1021/ol302837h
Delpuech, J. J., Khaddar, M. R., Peguy, A. A., & Rubini, P. R. (1975). Octahedral and tetrahedral solvates of the aluminum cation. Study of the exchange of free and bound organophosphorus ligands by nuclear magnetic resonance spectroscopy. Journal of the American Chemical Society, 97(12), 3373-3379. doi:10.1021/ja00845a016
Gascon, J., Corma, A., Kapteijn, F., & Llabrés i Xamena, F. X. (2013). Metal Organic Framework Catalysis: Quo vadis? ACS Catalysis, 4(2), 361-378. doi:10.1021/cs400959k
García-García, P., Müller, M., & Corma, A. (2014). MOF catalysis in relation to their homogeneous counterparts and conventional solid catalysts. Chemical Science, 5(8), 2979. doi:10.1039/c4sc00265b
Dai-Il, J., Tae-wonchoi, C., Yun-Young, K., In-Shik, K., You-Mi, P., Yong-Gyun, L., & Doo-Hee, J. (1999). Synthesis Of 1,5-Benzodiazepine Derivatives. Synthetic Communications, 29(11), 1941-1951. doi:10.1080/00397919908086183
Pozarentzi, M., Stephanidou-Stephanatou, J., & Tsoleridis, C. A. (2002). An efficient method for the synthesis of 1,5-benzodiazepine derivatives under microwave irradiation without solvent. Tetrahedron Letters, 43(9), 1755-1758. doi:10.1016/s0040-4039(02)00115-6
Varala, R., Enugala, R., & Adapa, S. R. (2007). p-nitrobenzoic acid promoted synthesis of 1,5-benzodiazepine derivatives. Journal of the Brazilian Chemical Society, 18(2). doi:10.1590/s0103-50532007000200008
Reddy, B. M., & Sreekanth, P. M. (2003). An efficient synthesis of 1,5-benzodiazepine derivatives catalyzed by a solid superacid sulfated zirconia. Tetrahedron Letters, 44(24), 4447-4449. doi:10.1016/s0040-4039(03)01034-7
Tajbakhsh, M., Heravi, M. M., Mohajerani, B., & Ahmadi, A. N. (2006). Solid acid catalytic synthesis of 1,5-benzodiazepines: A highly improved protocol. Journal of Molecular Catalysis A: Chemical, 247(1-2), 213-215. doi:10.1016/j.molcata.2005.11.033
Majid, S. A., Khanday, W. A., & Tomar, R. (2012). Synthesis of 1,5-Benzodiazepine and Its Derivatives by Condensation Reaction Using H-MCM-22 as Catalyst. Journal of Biomedicine and Biotechnology, 2012, 1-6. doi:10.1155/2012/510650
Climent, M. J., Corma, A., Iborra, S., & Santos, L. L. (2009). Multisite Solid Catalyst for Cascade Reactions: The Direct Synthesis of Benzodiazepines from Nitro Compounds. Chemistry - A European Journal, 15(35), 8834-8841. doi:10.1002/chem.200900492
Afzal Pasha, M., & Puttaramegowda Jayashankara, V. (2006). Synthesis of 1,5-Benzodiazepine Derivatives Catalysed by Zinc Chloride. HETEROCYCLES, 68(5), 1017. doi:10.3987/com-05-10647
Balakrishna, M. ., & Kaboudin, B. (2001). A simple and new method for the synthesis of 1,5-benzodiazepine derivatives on a solid surface. Tetrahedron Letters, 42(6), 1127-1129. doi:10.1016/s0040-4039(00)02168-7
Adharvana Chari, M., & Syamasundar, K. (2005). Polymer (PVP) supported ferric chloride: an efficient and recyclable heterogeneous catalyst for high yield synthesis of 1,5-benzodiazepine derivatives under solvent free conditions and microwave irradiation. Catalysis Communications, 6(1), 67-70. doi:10.1016/j.catcom.2004.10.009
Timofeeva, M. N., Prikhod’ko, S. A., Makarova, K. N., Malyshev, M. E., Panchenko, V. N., Ayupov, A. B., & Jhung, S. H. (2017). Iron-containing materials as catalysts for the synthesis of 1,5-benzodiazepine from 1,2-phenylenediamine and acetone. Reaction Kinetics, Mechanisms and Catalysis, 121(2), 689-699. doi:10.1007/s11144-017-1190-2
Fazaeli, R., & Aliyan, H. (2007). Clay (KSF and K10)-supported heteropoly acids: Friendly, efficient, reusable and heterogeneous catalysts for high yield synthesis of 1,5-benzodiazepine derivatives both in solution and under solvent-free conditions. Applied Catalysis A: General, 331, 78-83. doi:10.1016/j.apcata.2007.07.030
Huang, G., Yang, Q., Xu, Q., Yu, S.-H., & Jiang, H.-L. (2016). Polydimethylsiloxane Coating for a Palladium/MOF Composite: Highly Improved Catalytic Performance by Surface Hydrophobization. Angewandte Chemie International Edition, 55(26), 7379-7383. doi:10.1002/anie.201600497
Jeganathan, M., & Pitchumani, K. (2014). Solvent-Free Syntheses of 1,5-Benzodiazepines Using HY Zeolite as a Green Solid Acid Catalyst. ACS Sustainable Chemistry & Engineering, 2(5), 1169-1176. doi:10.1021/sc400560v
[-]