- -

Enhanced NiO Dispersion on a High Surface Area Pillared Heterostructure Covered by Niobium Leads to Optimal Behaviour in the Oxidative Dehydrogenation of Ethane

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Enhanced NiO Dispersion on a High Surface Area Pillared Heterostructure Covered by Niobium Leads to Optimal Behaviour in the Oxidative Dehydrogenation of Ethane

Mostrar el registro completo del ítem

Rodríguez-Castellón, E.; Delgado-Muñoz, D.; Dejoz, A.; Vázquez, I.; Agouram, S.; Cecilia, JA.; Solsona, B.... (2020). Enhanced NiO Dispersion on a High Surface Area Pillared Heterostructure Covered by Niobium Leads to Optimal Behaviour in the Oxidative Dehydrogenation of Ethane. Chemistry - A European Journal. 26(42):9371-9381. https://doi.org/10.1002/chem.202000832

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/165407

Ficheros en el ítem

Metadatos del ítem

Título: Enhanced NiO Dispersion on a High Surface Area Pillared Heterostructure Covered by Niobium Leads to Optimal Behaviour in the Oxidative Dehydrogenation of Ethane
Autor: Rodríguez-Castellón, Enrique Delgado-Muñoz, Daniel Dejoz, Ana Vázquez, Isabel Agouram, Said Cecilia, Juan A. Solsona, Benjamín López Nieto, José Manuel
Entidad UPV: Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química
Fecha difusión:
Resumen:
[EN] A Nb-containing siliceous porous clay heterostructure (PCH) with Nb contents from 0 to 30 wt %) was prepared from a bentonite and used as support in the preparation of supported NiO catalysts with NiO loading from 15 ...[+]
Palabras clave: Dehydrogenation , Nickel , Niobium , Porous heterostructures , Supported catalysts
Derechos de uso: Reserva de todos los derechos
Fuente:
Chemistry - A European Journal. (issn: 0947-6539 )
DOI: 10.1002/chem.202000832
Editorial:
John Wiley & Sons
Versión del editor: https://doi.org/10.1002/chem.202000832
Código del Proyecto:
info:eu-repo/grantAgreement/MINECO//SVP-2014-068669/ES/SVP-2014-068669/
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/MAT2017-84118-C2-1-R/ES/VALORIZACION DE RECURSOS NATURALES COMO NUEVOS MATERIALES AVANZADOS :APLICACIONES CATALITICAS Y ELECTROQUIMICAS/
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-099668-B-C21/ES/VALORIZACION DE CO2: CAPTURA, Y TRANSFORMACION CATALITICA PARA ALMACENAMIENTO DE ENERGIA, COMBUSTIBLES Y PRODUCTOS QUIMICOS/
info:eu-repo/grantAgreement/AEI//RTl2018-099668-B-C22/
info:eu-repo/grantAgreement/MINECO//SEV-2016-0683/
Descripción: This is the peer reviewed version of the following article: E. Rodríguez-Castellón, D. Delgado, A. Dejoz, I. Vázquez, S. Agouram, J. A. Cecilia, B. Solsona, J. M. López Nieto, Chem. Eur. J. 2020, 26, 9371, which has been published in final form at https://doi.org/10.1002/chem.202000832. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving.
Agradecimientos:
The authors would like to acknowledge the Ministerio de Ciencia, Innovacion y Universidades of Spain (CRTl2018-099668-B-C21, RTl2018-099668-B-C22 and MAT2017-84118-C2-1-R projects). Authors from ITQ also thank Project ...[+]
Tipo: Artículo

References

L. Nichols Industry Perspectives: Global petrochemical sector to see robust growth to 2020 Hydrocarbon Processing 2017.

Hermabessiere, L., Dehaut, A., Paul-Pont, I., Lacroix, C., Jezequel, R., Soudant, P., & Duflos, G. (2017). Occurrence and effects of plastic additives on marine environments and organisms: A review. Chemosphere, 182, 781-793. doi:10.1016/j.chemosphere.2017.05.096

Jia, L., Evans, S., & Linden, S. van der. (2019). Motivating actions to mitigate plastic pollution. Nature Communications, 10(1). doi:10.1038/s41467-019-12666-9 [+]
L. Nichols Industry Perspectives: Global petrochemical sector to see robust growth to 2020 Hydrocarbon Processing 2017.

Hermabessiere, L., Dehaut, A., Paul-Pont, I., Lacroix, C., Jezequel, R., Soudant, P., & Duflos, G. (2017). Occurrence and effects of plastic additives on marine environments and organisms: A review. Chemosphere, 182, 781-793. doi:10.1016/j.chemosphere.2017.05.096

Jia, L., Evans, S., & Linden, S. van der. (2019). Motivating actions to mitigate plastic pollution. Nature Communications, 10(1). doi:10.1038/s41467-019-12666-9

Ghanta, M., Fahey, D., & Subramaniam, B. (2013). Environmental impacts of ethylene production from diverse feedstocks and energy sources. Applied Petrochemical Research, 4(2), 167-179. doi:10.1007/s13203-013-0029-7

REN, T., PATEL, M., & BLOK, K. (2006). Olefins from conventional and heavy feedstocks: Energy use in steam cracking and alternative processes. Energy, 31(4), 425-451. doi:10.1016/j.energy.2005.04.001

Cavani, F., Ballarini, N., & Cericola, A. (2007). Oxidative dehydrogenation of ethane and propane: How far from commercial implementation? Catalysis Today, 127(1-4), 113-131. doi:10.1016/j.cattod.2007.05.009

López Nieto, J. M., & Solsona, B. (2018). Gas phase heterogeneous partial oxidation reactions. Metal Oxides in Heterogeneous Catalysis, 211-286. doi:10.1016/b978-0-12-811631-9.00005-3

Gärtner, C. A., van Veen, A. C., & Lercher, J. A. (2013). Oxidative Dehydrogenation of Ethane: Common Principles and Mechanistic Aspects. ChemCatChem, 5(11), 3196-3217. doi:10.1002/cctc.201200966

Nieto, J. M. L., Botella, P., Vázquez, M. I., & Dejoz, A. (2002). The selective oxidative dehydrogenation of ethane over hydrothermally synthesised MoVTeNb catalysts. Chem. Commun., (17), 1906-1907. doi:10.1039/b204037a

SOLSONA, B., VAZQUEZ, M., IVARS, F., DEJOZ, A., CONCEPCION, P., & LOPEZNIETO, J. (2007). Selective oxidation of propane and ethane on diluted Mo–V–Nb–Te mixed-oxide catalysts. Journal of Catalysis, 252(2), 271-280. doi:10.1016/j.jcat.2007.09.019

Y.Liu Patent US6355854 B1 2001.

HERACLEOUS, E., & LEMONIDOU, A. (2006). Ni–Nb–O mixed oxides as highly active and selective catalysts for ethene production via ethane oxidative dehydrogenation. Part I: Characterization and catalytic performance. Journal of Catalysis, 237(1), 162-174. doi:10.1016/j.jcat.2005.11.002

Heracleous, E., & Lemonidou, A. A. (2010). Ni–Me–O mixed metal oxides for the effective oxidative dehydrogenation of ethane to ethylene – Effect of promoting metal Me. Journal of Catalysis, 270(1), 67-75. doi:10.1016/j.jcat.2009.12.004

Skoufa, Z., Xantri, G., Heracleous, E., & Lemonidou, A. A. (2014). A study of Ni–Al–O mixed oxides as catalysts for the oxidative conversion of ethane to ethylene. Applied Catalysis A: General, 471, 107-117. doi:10.1016/j.apcata.2013.11.042

Savova, B., Loridant, S., Filkova, D., & Millet, J. M. M. (2010). Ni–Nb–O catalysts for ethane oxidative dehydrogenation. Applied Catalysis A: General, 390(1-2), 148-157. doi:10.1016/j.apcata.2010.10.004

Skoufa, Z., Heracleous, E., & Lemonidou, A. A. (2012). Unraveling the contribution of structural phases in Ni–Nb–O mixed oxides in ethane oxidative dehydrogenation. Catalysis Today, 192(1), 169-176. doi:10.1016/j.cattod.2011.12.022

Zhu, H., Ould-Chikh, S., Anjum, D. H., Sun, M., Biausque, G., Basset, J.-M., & Caps, V. (2012). Nb effect in the nickel oxide-catalyzed low-temperature oxidative dehydrogenation of ethane. Journal of Catalysis, 285(1), 292-303. doi:10.1016/j.jcat.2011.10.005

Solsona, B., López Nieto, J. M., Concepción, P., Dejoz, A., Ivars, F., & Vázquez, M. I. (2011). Oxidative dehydrogenation of ethane over Ni–W–O mixed metal oxide catalysts. Journal of Catalysis, 280(1), 28-39. doi:10.1016/j.jcat.2011.02.010

Solsona, B., Concepción, P., Hernández, S., Demicol, B., & Nieto, J. M. L. (2012). Oxidative dehydrogenation of ethane over NiO–CeO2 mixed oxides catalysts. Catalysis Today, 180(1), 51-58. doi:10.1016/j.cattod.2011.03.056

Zhu, H., Rosenfeld, D. C., Harb, M., Anjum, D. H., Hedhili, M. N., Ould-Chikh, S., & Basset, J.-M. (2016). Ni–M–O (M = Sn, Ti, W) Catalysts Prepared by a Dry Mixing Method for Oxidative Dehydrogenation of Ethane. ACS Catalysis, 6(5), 2852-2866. doi:10.1021/acscatal.6b00044

Zhu, H., Dong, H., Laveille, P., Saih, Y., Caps, V., & Basset, J.-M. (2014). Metal oxides modified NiO catalysts for oxidative dehydrogenation of ethane to ethylene. Catalysis Today, 228, 58-64. doi:10.1016/j.cattod.2013.11.061

Zhu, H., Rosenfeld, D. C., Anjum, D. H., Sangaru, S. S., Saih, Y., Ould-Chikh, S., & Basset, J.-M. (2015). Ni–Ta–O mixed oxide catalysts for the low temperature oxidative dehydrogenation of ethane to ethylene. Journal of Catalysis, 329, 291-306. doi:10.1016/j.jcat.2015.05.023

HERACLEOUS, E., LEE, A., WILSON, K., & LEMONIDOU, A. (2005). Investigation of Ni-based alumina-supported catalysts for the oxidative dehydrogenation of ethane to ethylene: structural characterization and reactivity studies. Journal of Catalysis, 231(1), 159-171. doi:10.1016/j.jcat.2005.01.015

Zhang, Z., Ding, J., Chai, R., Zhao, G., Liu, Y., & Lu, Y. (2018). Oxidative dehydrogenation of ethane to ethylene: A promising CeO2-ZrO2-modified NiO-Al2O3/Ni-foam catalyst. Applied Catalysis A: General, 550, 151-159. doi:10.1016/j.apcata.2017.11.005

Zhang, Z., Zhao, G., Chai, R., Zhu, J., Liu, Y., & Lu, Y. (2018). Low-temperature, highly selective, highly stable Nb2O5–NiO/Ni-foam catalyst for the oxidative dehydrogenation of ethane. Catalysis Science & Technology, 8(17), 4383-4389. doi:10.1039/c8cy01041b

Skoufa, Z., Heracleous, E., & Lemonidou, A. A. (2015). On ethane ODH mechanism and nature of active sites over NiO-based catalysts via isotopic labeling and methanol sorption studies. Journal of Catalysis, 322, 118-129. doi:10.1016/j.jcat.2014.11.014

Solsona, B., Concepción, P., López Nieto, J. M., Dejoz, A., Cecilia, J. A., Agouram, S., … Rodríguez Castellón, E. (2016). Nickel oxide supported on porous clay heterostructures as selective catalysts for the oxidative dehydrogenation of ethane. Catalysis Science & Technology, 6(10), 3419-3429. doi:10.1039/c5cy01811k

Popescu, I., Heracleous, E., Skoufa, Z., Lemonidou, A., & Marcu, I.-C. (2014). Study by electrical conductivity measurements of semiconductive and redox properties of M-doped NiO (M = Li, Mg, Al, Ga, Ti, Nb) catalysts for the oxidative dehydrogenation of ethane. Physical Chemistry Chemical Physics, 16(10), 4962. doi:10.1039/c3cp54817a

Popescu, I., Skoufa, Z., Heracleous, E., Lemonidou, A., & Marcu, I.-C. (2015). A study by electrical conductivity measurements of the semiconductive and redox properties of Nb-doped NiO catalysts in correlation with the oxidative dehydrogenation of ethane. Physical Chemistry Chemical Physics, 17(12), 8138-8147. doi:10.1039/c5cp00392j

López Nieto, J. M., Solsona, B., Grasselli, R. K., & Concepción, P. (2014). Promoted NiO Catalysts for the Oxidative Dehydrogenation of Ethane. Topics in Catalysis, 57(14-16), 1248-1255. doi:10.1007/s11244-014-0288-2

Delgado, D., Solsona, B., Ykrelef, A., Rodríguez-Gómez, A., Caballero, A., Rodríguez-Aguado, E., … López Nieto, J. M. (2017). Redox and Catalytic Properties of Promoted NiO Catalysts for the Oxidative Dehydrogenation of Ethane. The Journal of Physical Chemistry C, 121(45), 25132-25142. doi:10.1021/acs.jpcc.7b07066

Delgado, D., Sanchís, R., Cecilia, J. A., Rodríguez-Castellón, E., Caballero, A., Solsona, B., & Nieto, J. M. L. (2019). Support effects on NiO-based catalysts for the oxidative dehydrogenation (ODH) of ethane. Catalysis Today, 333, 10-16. doi:10.1016/j.cattod.2018.07.010

Ko, E. I., & Weissman, J. G. (1990). Structures of niobium pentoxide and their implications on chemical behavior. Catalysis Today, 8(1), 27-36. doi:10.1016/0920-5861(90)87005-n

Tauc, J. (1968). Optical properties and electronic structure of amorphous Ge and Si. Materials Research Bulletin, 3(1), 37-46. doi:10.1016/0025-5408(68)90023-8

Viezbicke, B. D., Patel, S., Davis, B. E., & Birnie, D. P. (2015). Evaluation of the Tauc method for optical absorption edge determination: ZnO thin films as a model system. physica status solidi (b), 252(8), 1700-1710. doi:10.1002/pssb.201552007

Sathasivam, S., Williamson, B. A. D., Althabaiti, S. A., Obaid, A. Y., Basahel, S. N., Mokhtar, M., … Parkin, I. P. (2017). Chemical Vapor Deposition Synthesis and Optical Properties of Nb2O5 Thin Films with Hybrid Functional Theoretical Insight into the Band Structure and Band Gaps. ACS Applied Materials & Interfaces, 9(21), 18031-18038. doi:10.1021/acsami.7b00907

Kondo, J. N., Hiyoshi, Y., Osuga, R., Ishikawa, A., Wang, Y.-H., & Yokoi, T. (2018). Thin (single–triple) niobium oxide layers on mesoporous silica substrate. Microporous and Mesoporous Materials, 262, 191-198. doi:10.1016/j.micromeso.2017.11.032

Kreissl, H. T., Li, M. M. J., Peng, Y.-K., Nakagawa, K., Hooper, T. J. N., Hanna, J. V., … Tsang, S. C. E. (2017). Structural Studies of Bulk to Nanosize Niobium Oxides with Correlation to Their Acidity. Journal of the American Chemical Society, 139(36), 12670-12680. doi:10.1021/jacs.7b06856

Grundner, M., & Halbritter, J. (1980). XPS and AES studies on oxide growth and oxide coatings on niobium. Journal of Applied Physics, 51(1), 397-405. doi:10.1063/1.327386

Solsona, B., López Nieto, J. M., Agouram, S., Soriano, M. D., Dejoz, A., Vázquez, M. I., & Concepción, P. (2016). Optimizing Both Catalyst Preparation and Catalytic Behaviour for the Oxidative Dehydrogenation of Ethane of Ni–Sn–O Catalysts. Topics in Catalysis, 59(17-18), 1564-1572. doi:10.1007/s11244-016-0674-z

Zhang, J., Li, M., Feng, Z., Chen, J., & Li, C. (2005). UV Raman Spectroscopic Study on TiO2. I. Phase Transformation at the Surface and in the Bulk. The Journal of Physical Chemistry B, 110(2), 927-935. doi:10.1021/jp0552473

Li, C., & Li, M. (2002). UV Raman spectroscopic study on the phase transformation of ZrO2, Y2O3-ZrO2 and SO42?/ZrO2. Journal of Raman Spectroscopy, 33(5), 301-308. doi:10.1002/jrs.863

Mironova-Ulmane, N., Kuzmin, A., Steins, I., Grabis, J., Sildos, I., & Pärs, M. (2007). Raman scattering in nanosized nickel oxide NiO. Journal of Physics: Conference Series, 93, 012039. doi:10.1088/1742-6596/93/1/012039

Dietz, R. E., Brinkman, W. F., Meixner, A. E., Guggenheim, H. J., Graham, C. D., & Rhyne, J. J. (1972). RAMAN SCATTERING BY FOUR MAGNONS IN NiO AND KNiF3. doi:10.1063/1.3699451

Biju, V., & Abdul Khadar, M. (2002). Journal of Nanoparticle Research, 4(3), 247-253. doi:10.1023/a:1019949805751

Biju, V. (2007). Ni 2p X-ray photoelectron spectroscopy study of nanostructured nickel oxide. Materials Research Bulletin, 42(5), 791-796. doi:10.1016/j.materresbull.2006.10.009

Vedrine, J. C., Hollinger, G., & Tran Minh Duc. (1978). Investigations of antigorite and nickel supported catalysts by x-ray photoelectron spectroscopy. The Journal of Physical Chemistry, 82(13), 1515-1520. doi:10.1021/j100502a011

Salagre, P., Fierro, J. L. G., Medina, F., & Sueiras, J. E. (1996). Characterization of nickel species on several γ-alumina supported nickel samples. Journal of Molecular Catalysis A: Chemical, 106(1-2), 125-134. doi:10.1016/1381-1169(95)00256-1

Van Veenendaal, M. A., & Sawatzky, G. A. (1993). Nonlocal screening effects in 2px-ray photoemission spectroscopy core-level line shapes of transition metal compounds. Physical Review Letters, 70(16), 2459-2462. doi:10.1103/physrevlett.70.2459

Blasco, T., & Nieto, J. M. L. (1997). Oxidative dyhydrogenation of short chain alkanes on supported vanadium oxide catalysts. Applied Catalysis A: General, 157(1-2), 117-142. doi:10.1016/s0926-860x(97)00029-x

Rojas, E., Delgado, J. J., Guerrero-Pérez, M. O., & Bañares, M. A. (2013). Performance of NiO and Ni–Nb–O active phases during the ethane ammoxidation into acetonitrile. Catalysis Science & Technology, 3(12), 3173. doi:10.1039/c3cy00415e

Skoufa, Z., Heracleous, E., & Lemonidou, A. A. (2012). Investigation of engineering aspects in ethane ODH over highly selective Ni0.85Nb0.15Ox catalyst. Chemical Engineering Science, 84, 48-56. doi:10.1016/j.ces.2012.08.007

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem