- -

Degradation of silica particles functionalised with essential oil components under simulated physiological conditions

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Degradation of silica particles functionalised with essential oil components under simulated physiological conditions

Mostrar el registro completo del ítem

Fuentes López, C.; Ruiz Rico, M.; Fuentes López, A.; Ruiz, MJ.; Barat Baviera, JM. (2020). Degradation of silica particles functionalised with essential oil components under simulated physiological conditions. Journal of Hazardous Materials. 339:1-10. https://doi.org/10.1016/j.jhazmat.2020.123120

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/165734

Ficheros en el ítem

Metadatos del ítem

Título: Degradation of silica particles functionalised with essential oil components under simulated physiological conditions
Autor: Fuentes López, Cristina Ruiz Rico, María Fuentes López, Ana Ruiz, María José Barat Baviera, José Manuel
Entidad UPV: Universitat Politècnica de València. Departamento de Tecnología de Alimentos - Departament de Tecnologia d'Aliments
Fecha difusión:
Resumen:
[EN] In this work, the biodurability of three silica particle types (synthetic amourphous silica, MCM-41 microparticles, MCM-41 nanoparticles) functionalised with three different essential oil components (carvacrol, eugenol, ...[+]
Palabras clave: Silica , MCM-41 , Functionalisation , In vitro digestion , Artificial lysosomal fluid
Derechos de uso: Reserva de todos los derechos
Fuente:
Journal of Hazardous Materials. (issn: 0304-3894 )
DOI: 10.1016/j.jhazmat.2020.123120
Editorial:
Elsevier
Versión del editor: https://doi.org/10.1016/j.jhazmat.2020.123120
Código del Proyecto:
info:eu-repo/grantAgreement/GVA//ACIF%2F2016%2F139/
info:eu-repo/grantAgreement/GVA//APOSTD%2F2019%2F118/
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-101599-B-C21/ES/DESARROLLO Y APLICACION DE SISTEMAS ANTIMICROBIANOS PARA LA INDUSTRIA ALIMENTARIA BASADOS EN SUPERFICIES FUNCIONALIZADAS Y SISTEMAS DE LIBERACION CONTROLADA/
Agradecimientos:
The authors gratefully acknowledge the financial support from the Spanish government (Project RTI2018-101599-B-C21 (MCUI/AEI/FEDER, EU)). Cristina Fuentes also thanks the Generalitat Valenciana for being funded by the ...[+]
Tipo: Artículo

References

ALOthman, Z. (2012). A Review: Fundamental Aspects of Silicate Mesoporous Materials. Materials, 5(12), 2874-2902. doi:10.3390/ma5122874

Berg, J. M., Romoser, A., Banerjee, N., Zebda, R., & Sayes, C. M. (2009). The relationship between pH and zeta potential of ∼ 30 nm metal oxide nanoparticle suspensions relevant toin vitrotoxicological evaluations. Nanotoxicology, 3(4), 276-283. doi:10.3109/17435390903276941

Braun, K., Pochert, A., Beck, M., Fiedler, R., Gruber, J., & Lindén, M. (2016). Dissolution kinetics of mesoporous silica nanoparticles in different simulated body fluids. Journal of Sol-Gel Science and Technology, 79(2), 319-327. doi:10.1007/s10971-016-4053-9 [+]
ALOthman, Z. (2012). A Review: Fundamental Aspects of Silicate Mesoporous Materials. Materials, 5(12), 2874-2902. doi:10.3390/ma5122874

Berg, J. M., Romoser, A., Banerjee, N., Zebda, R., & Sayes, C. M. (2009). The relationship between pH and zeta potential of ∼ 30 nm metal oxide nanoparticle suspensions relevant toin vitrotoxicological evaluations. Nanotoxicology, 3(4), 276-283. doi:10.3109/17435390903276941

Braun, K., Pochert, A., Beck, M., Fiedler, R., Gruber, J., & Lindén, M. (2016). Dissolution kinetics of mesoporous silica nanoparticles in different simulated body fluids. Journal of Sol-Gel Science and Technology, 79(2), 319-327. doi:10.1007/s10971-016-4053-9

Cho, W.-S., Duffin, R., Thielbeer, F., Bradley, M., Megson, I. L., MacNee, W., … Donaldson, K. (2012). Zeta Potential and Solubility to Toxic Ions as Mechanisms of Lung Inflammation Caused by Metal/Metal Oxide Nanoparticles. Toxicological Sciences, 126(2), 469-477. doi:10.1093/toxsci/kfs006

Croissant, J. G., Fatieiev, Y., Almalik, A., & Khashab, N. M. (2017). Mesoporous Silica and Organosilica Nanoparticles: Physical Chemistry, Biosafety, Delivery Strategies, and Biomedical Applications. Advanced Healthcare Materials, 7(4), 1700831. doi:10.1002/adhm.201700831

Diab, R., Canilho, N., Pavel, I. A., Haffner, F. B., Girardon, M., & Pasc, A. (2017). Silica-based systems for oral delivery of drugs, macromolecules and cells. Advances in Colloid and Interface Science, 249, 346-362. doi:10.1016/j.cis.2017.04.005

Fashina, A., Antunes, E., & Nyokong, T. (2013). Silica nanoparticles grafted with phthalocyanines: photophysical properties and studies in artificial lysosomal fluid. New Journal of Chemistry, 37(9), 2800. doi:10.1039/c3nj00439b

Flynn, J., Mallen, S., Durack, E., O’Connor, P. M., & Hudson, S. P. (2019). Mesoporous matrices for the delivery of the broad spectrum bacteriocin, nisin A. Journal of Colloid and Interface Science, 537, 396-406. doi:10.1016/j.jcis.2018.11.037

García-Ríos, E., Ruiz-Rico, M., Guillamón, J. M., Pérez-Esteve, É., & Barat, J. M. (2018). Improved antimicrobial activity of immobilised essential oil components against representative spoilage wine microorganisms. Food Control, 94, 177-186. doi:10.1016/j.foodcont.2018.07.005

He, Q., Shi, J., Zhu, M., Chen, Y., & Chen, F. (2010). The three-stage in vitro degradation behavior of mesoporous silica in simulated body fluid. Microporous and Mesoporous Materials, 131(1-3), 314-320. doi:10.1016/j.micromeso.2010.01.009

He, Q., Zhang, Z., Gao, F., Li, Y., & Shi, J. (2010). In vivo Biodistribution and Urinary Excretion of Mesoporous Silica Nanoparticles: Effects of Particle Size and PEGylation. Small, 7(2), 271-280. doi:10.1002/smll.201001459

Henderson, R. G., Verougstraete, V., Anderson, K., Arbildua, J. J., Brock, T. O., Brouwers, T., … Oller, A. R. (2014). Inter-laboratory validation of bioaccessibility testing for metals. Regulatory Toxicology and Pharmacology, 70(1), 170-181. doi:10.1016/j.yrtph.2014.06.021

Izquierdo-Barba, I., Colilla, M., Manzano, M., & Vallet-Regí, M. (2010). In vitro stability of SBA-15 under physiological conditions. Microporous and Mesoporous Materials, 132(3), 442-452. doi:10.1016/j.micromeso.2010.03.025

Larson, R. (2010). Assessing the Solubility of Silicon Dioxide Particles Using Simulated Lung Fluid”~!2010-05-13~!2010-07-08~!2010-09-02~! The Open Toxicology Journal, 4(1), 51-55. doi:10.2174/1874340401004010051

Lin, Y.-S., Abadeer, N., & Haynes, C. L. (2011). Stability of small mesoporous silicananoparticles in biological media. Chem. Commun., 47(1), 532-534. doi:10.1039/c0cc02923h

Manzano, M., Aina, V., Areán, C. O., Balas, F., Cauda, V., Colilla, M., … Vallet-Regí, M. (2008). Studies on MCM-41 mesoporous silica for drug delivery: Effect of particle morphology and amine functionalization. Chemical Engineering Journal, 137(1), 30-37. doi:10.1016/j.cej.2007.07.078

McClements, D. J., Xiao, H., & Demokritou, P. (2017). Physicochemical and colloidal aspects of food matrix effects on gastrointestinal fate of ingested inorganic nanoparticles. Advances in Colloid and Interface Science, 246, 165-180. doi:10.1016/j.cis.2017.05.010

Minekus, M., Alminger, M., Alvito, P., Ballance, S., Bohn, T., Bourlieu, C., … Brodkorb, A. (2014). A standardised staticin vitrodigestion method suitable for food – an international consensus. Food Funct., 5(6), 1113-1124. doi:10.1039/c3fo60702j

Oliveira, D. M., & Andrada, A. S. (2019). Synthesis of ordered mesoporous silica MCM-41 with controlled morphology for potential application in controlled drug delivery systems. Cerâmica, 65(374), 170-179. doi:10.1590/0366-69132019653742509

Pennington, J. A. T. (1991). Silicon in foods and diets. Food Additives and Contaminants, 8(1), 97-118. doi:10.1080/02652039109373959

Pérez-Esteve, É., Ruiz-Rico, M., de la Torre, C., Llorca, E., Sancenón, F., Marcos, M. D., … Barat, J. M. (2016). Stability of different mesoporous silica particles during an in vitro digestion. Microporous and Mesoporous Materials, 230, 196-207. doi:10.1016/j.micromeso.2016.05.004

Pérez-Esteve, É., Ruiz-Rico, M., de la Torre, C., Villaescusa, L. A., Sancenón, F., Marcos, M. D., … Barat, J. M. (2016). Encapsulation of folic acid in different silica porous supports: A comparative study. Food Chemistry, 196, 66-75. doi:10.1016/j.foodchem.2015.09.017

Ribes, S., Ruiz-Rico, M., Pérez-Esteve, É., Fuentes, A., Talens, P., Martínez-Máñez, R., & Barat, J. M. (2017). Eugenol and thymol immobilised on mesoporous silica-based material as an innovative antifungal system: Application in strawberry jam. Food Control, 81, 181-188. doi:10.1016/j.foodcont.2017.06.006

Ribes, S., Ruiz-Rico, M., Pérez-Esteve, É., Fuentes, A., & Barat, J. M. (2019). Enhancing the antimicrobial activity of eugenol, carvacrol and vanillin immobilised on silica supports against Escherichia coli or Zygosaccharomyces rouxii in fruit juices by their binary combinations. LWT, 113, 108326. doi:10.1016/j.lwt.2019.108326

Roelofs, F., & Vogelsberger, W. (2004). Dissolution Kinetics of Synthetic Amorphous Silica in Biological-Like Media and Its Theoretical Description. The Journal of Physical Chemistry B, 108(31), 11308-11316. doi:10.1021/jp048767r

Ruiz-Rico, M., Pérez-Esteve, É., Bernardos, A., Sancenón, F., Martínez-Máñez, R., Marcos, M. D., & Barat, J. M. (2017). Enhanced antimicrobial activity of essential oil components immobilized on silica particles. Food Chemistry, 233, 228-236. doi:10.1016/j.foodchem.2017.04.118

Sakai-Kato, K., Hidaka, M., Un, K., Kawanishi, T., & Okuda, H. (2014). Physicochemical properties and in vitro intestinal permeability properties and intestinal cell toxicity of silica particles, performed in simulated gastrointestinal fluids. Biochimica et Biophysica Acta (BBA) - General Subjects, 1840(3), 1171-1180. doi:10.1016/j.bbagen.2013.12.014

Stebounova, L. V., Guio, E., & Grassian, V. H. (2010). Silver nanoparticles in simulated biological media: a study of aggregation, sedimentation, and dissolution. Journal of Nanoparticle Research, 13(1), 233-244. doi:10.1007/s11051-010-0022-3

Stopford, W., Turner, J., Cappellini, D., & Brock, T. (2003). Bioaccessibility testing of cobalt compounds. Journal of Environmental Monitoring, 5(4), 675. doi:10.1039/b302257a

Utembe, W., Potgieter, K., Stefaniak, A. B., & Gulumian, M. (2015). Dissolution and biodurability: Important parameters needed for risk assessment of nanomaterials. Particle and Fibre Toxicology, 12(1). doi:10.1186/s12989-015-0088-2

Villota, R., Hawkes, J. G., & Cochrane, H. (1986). Food applications and the toxicological and nutritional implications of amorphous silicon dioxide. C R C Critical Reviews in Food Science and Nutrition, 23(4), 289-321. doi:10.1080/10408398609527428

Wang, G., Otuonye, A. N., Blair, E. A., Denton, K., Tao, Z., & Asefa, T. (2009). Functionalized mesoporous materials for adsorption and release of different drug molecules: A comparative study. Journal of Solid State Chemistry, 182(7), 1649-1660. doi:10.1016/j.jssc.2009.03.034

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem