Abdalla, A. E. M., Darwish, S. M., Ayad, E. H. E., & El-Hamahmy, R. M. (2007). Egyptian mango by-product 1. Compositional quality of mango seed kernel. Food Chemistry, 103(4), 1134-1140. doi:10.1016/j.foodchem.2006.10.017
Ajila, C. M., Leelavathi, K., & Prasada Rao, U. J. S. (2008). Improvement of dietary fiber content and antioxidant properties in soft dough biscuits with the incorporation of mango peel powder. Journal of Cereal Science, 48(2), 319-326. doi:10.1016/j.jcs.2007.10.001
AJILA, C., NAIDU, K., BHAT, S., & RAO, U. (2007). Bioactive compounds and antioxidant potential of mango peel extract. Food Chemistry, 105(3), 982-988. doi:10.1016/j.foodchem.2007.04.052
[+]
Abdalla, A. E. M., Darwish, S. M., Ayad, E. H. E., & El-Hamahmy, R. M. (2007). Egyptian mango by-product 1. Compositional quality of mango seed kernel. Food Chemistry, 103(4), 1134-1140. doi:10.1016/j.foodchem.2006.10.017
Ajila, C. M., Leelavathi, K., & Prasada Rao, U. J. S. (2008). Improvement of dietary fiber content and antioxidant properties in soft dough biscuits with the incorporation of mango peel powder. Journal of Cereal Science, 48(2), 319-326. doi:10.1016/j.jcs.2007.10.001
AJILA, C., NAIDU, K., BHAT, S., & RAO, U. (2007). Bioactive compounds and antioxidant potential of mango peel extract. Food Chemistry, 105(3), 982-988. doi:10.1016/j.foodchem.2007.04.052
Arnao, M. B. (2000). Some methodological problems in the determination of antioxidant activity using chromogen radicals: a practical case. Trends in Food Science & Technology, 11(11), 419-421. doi:10.1016/s0924-2244(01)00027-9
Brand-Williams, W., Cuvelier, M. E., & Berset, C. (1995). Use of a free radical method to evaluate antioxidant activity. LWT - Food Science and Technology, 28(1), 25-30. doi:10.1016/s0023-6438(95)80008-5
Burton-Freeman, B. M., Sandhu, A. K., & Edirisinghe, I. (2017). Mangos and their bioactive components: adding variety to the fruit plate for health. Food & Function, 8(9), 3010-3032. doi:10.1039/c7fo00190h
Butkhup, L., Samappito, W., & Samappito, S. (2012). Phenolic composition and antioxidant activity of white mulberry (Morus albaL.) fruits. International Journal of Food Science & Technology, 48(5), 934-940. doi:10.1111/ijfs.12044
Cassol, L., Rodrigues, E., & Zapata Noreña, C. P. (2019). Extracting phenolic compounds from Hibiscus sabdariffa L. calyx using microwave assisted extraction. Industrial Crops and Products, 133, 168-177. doi:10.1016/j.indcrop.2019.03.023
Chemat, F., Rombaut, N., Sicaire, A.-G., Meullemiestre, A., Fabiano-Tixier, A.-S., & Abert-Vian, M. (2017). Ultrasound assisted extraction of food and natural products. Mechanisms, techniques, combinations, protocols and applications. A review. Ultrasonics Sonochemistry, 34, 540-560. doi:10.1016/j.ultsonch.2016.06.035
Cheng, X., Zhang, M., Adhikari, B., Islam, M. N., & Xu, B. (2014). Effect of ultrasound irradiation on some freezing parameters of ultrasound-assisted immersion freezing of strawberries. International Journal of Refrigeration, 44, 49-55. doi:10.1016/j.ijrefrig.2014.04.017
Chivate, M. M., & Pandit, A. B. (1995). Quantification of cavitation intensity in fluid bulk. Ultrasonics Sonochemistry, 2(1), S19-S25. doi:10.1016/1350-4177(94)00007-f
Cravotto, G., & Cintas, P. (2006). Power ultrasound in organic synthesis: moving cavitational chemistry from academia to innovative and large-scale applications. Chem. Soc. Rev., 35(2), 180-196. doi:10.1039/b503848k
Da Porto, C., Porretto, E., & Decorti, D. (2013). Comparison of ultrasound-assisted extraction with conventional extraction methods of oil and polyphenols from grape (Vitis vinifera L.) seeds. Ultrasonics Sonochemistry, 20(4), 1076-1080. doi:10.1016/j.ultsonch.2012.12.002
Deng, J., Xu, Z., Xiang, C., Liu, J., Zhou, L., Li, T., … Ding, C. (2017). Comparative evaluation of maceration and ultrasonic-assisted extraction of phenolic compounds from fresh olives. Ultrasonics Sonochemistry, 37, 328-334. doi:10.1016/j.ultsonch.2017.01.023
Dias, F. F. G., de Castro, R. J. S., Ohara, A., Nishide, T. G., Bagagli, M. P., & Sato, H. H. (2015). Simplex centroid mixture design to improve l -asparaginase production in solid-state fermentation using agroindustrial wastes. Biocatalysis and Agricultural Biotechnology, 4(4), 528-534. doi:10.1016/j.bcab.2015.09.011
Dubie, J., Stancik, A., Morra, M., & Nindo, C. (2013). Antioxidant Extraction from Mustard (Brassica juncea) Seed Meal Using High-Intensity Ultrasound. Journal of Food Science, 78(4), E542-E548. doi:10.1111/1750-3841.12085
Fu, L., Xu, B.-T., Xu, X.-R., Gan, R.-Y., Zhang, Y., Xia, E.-Q., & Li, H.-B. (2011). Antioxidant capacities and total phenolic contents of 62 fruits. Food Chemistry, 129(2), 345-350. doi:10.1016/j.foodchem.2011.04.079
Gallego, R., Bueno, M., & Herrero, M. (2019). Sub- and supercritical fluid extraction of bioactive compounds from plants, food-by-products, seaweeds and microalgae – An update. TrAC Trends in Analytical Chemistry, 116, 198-213. doi:10.1016/j.trac.2019.04.030
Gómez-Caravaca, A. M., López-Cobo, A., Verardo, V., Segura-Carretero, A., & Fernández-Gutiérrez, A. (2016). HPLC-DAD-q-TOF-MS as a powerful platform for the determination of phenolic and other polar compounds in the edible part of mango and its by-products (peel, seed, and seed husk). ELECTROPHORESIS, 37(7-8), 1072-1084. doi:10.1002/elps.201500439
González-Centeno, M. R., Knoerzer, K., Sabarez, H., Simal, S., Rosselló, C., & Femenia, A. (2014). Effect of acoustic frequency and power density on the aqueous ultrasonic-assisted extraction of grape pomace (Vitis vinifera L.) – A response surface approach. Ultrasonics Sonochemistry, 21(6), 2176-2184. doi:10.1016/j.ultsonch.2014.01.021
Guandalini, B. B. V., Rodrigues, N. P., & Marczak, L. D. F. (2019). Sequential extraction of phenolics and pectin from mango peel assisted by ultrasound. Food Research International, 119, 455-461. doi:10.1016/j.foodres.2018.12.011
Gülçin, İ. (2011). Antioxidant activity of food constituents: an overview. Archives of Toxicology, 86(3), 345-391. doi:10.1007/s00204-011-0774-2
He, B., Zhang, L.-L., Yue, X.-Y., Liang, J., Jiang, J., Gao, X.-L., & Yue, P.-X. (2016). Optimization of Ultrasound-Assisted Extraction of phenolic compounds and anthocyanins from blueberry ( Vaccinium ashei ) wine pomace. Food Chemistry, 204, 70-76. doi:10.1016/j.foodchem.2016.02.094
Hoyos-Arbeláez, J., Blandón-Naranjo, L., Vázquez, M., & Contreras-Calderón, J. (2018). Antioxidant capacity of mango fruit (Mangifera indica). An electrochemical study as an approach to the spectrophotometric methods. Food Chemistry, 266, 435-440. doi:10.1016/j.foodchem.2018.06.044
Jahurul, M. H. A., Zaidul, I. S. M., Ghafoor, K., Al-Juhaimi, F. Y., Nyam, K.-L., Norulaini, N. A. N., … Mohd Omar, A. K. (2015). Mango (Mangifera indica L.) by-products and their valuable components: A review. Food Chemistry, 183, 173-180. doi:10.1016/j.foodchem.2015.03.046
Kähkönen, M. P., Hopia, A. I., Vuorela, H. J., Rauha, J.-P., Pihlaja, K., Kujala, T. S., & Heinonen, M. (1999). Antioxidant Activity of Plant Extracts Containing Phenolic Compounds. Journal of Agricultural and Food Chemistry, 47(10), 3954-3962. doi:10.1021/jf990146l
Karadag, A., Ozcelik, B., & Saner, S. (2009). Review of Methods to Determine Antioxidant Capacities. Food Analytical Methods, 2(1), 41-60. doi:10.1007/s12161-008-9067-7
Kendall, J., & Monroe, K. P. (1917). THE VISCOSITY OF LIQUIDS. II. THE VISCOSITY-COMPOSITION CURVE FOR IDEAL LIQUID MIXTURES.1. Journal of the American Chemical Society, 39(9), 1787-1802. doi:10.1021/ja02254a001
Khemakhem, I., Ahmad-Qasem, M. H., Catalán, E. B., Micol, V., García-Pérez, J. V., Ayadi, M. A., & Bouaziz, M. (2017). Kinetic improvement of olive leaves’ bioactive compounds extraction by using power ultrasound in a wide temperature range. Ultrasonics Sonochemistry, 34, 466-473. doi:10.1016/j.ultsonch.2016.06.010
Kugel, R. W. (1998). Raoult’s Law: Binary Liquid-Vapor Phase Diagrams: A Simple Physical Chemistry Experiment. Journal of Chemical Education, 75(9), 1125. doi:10.1021/ed075p1125
Li, H., Pordesimo, L., & Weiss, J. (2004). High intensity ultrasound-assisted extraction of oil from soybeans. Food Research International, 37(7), 731-738. doi:10.1016/j.foodres.2004.02.016
Lim, S., Choi, A.-H., Kwon, M., Joung, E.-J., Shin, T., Lee, S.-G., … Kim, H.-R. (2019). Evaluation of antioxidant activities of various solvent extract from Sargassum serratifolium and its major antioxidant components. Food Chemistry, 278, 178-184. doi:10.1016/j.foodchem.2018.11.058
Liu, Y., Wei, S., Wu, M., & Yang, S. (2017). Phenolic compounds from date pits: ultrasonic-assisted extraction, antioxidant activity and component identification. Journal of Food Measurement and Characterization, 12(2), 967-973. doi:10.1007/s11694-017-9711-2
Lobo, F. A., Nascimento, M. A., Domingues, J. R., Falcão, D. Q., Hernanz, D., Heredia, F. J., & de Lima Araujo, K. G. (2017). Foam mat drying of Tommy Atkins mango: Effects of air temperature and concentrations of soy lecithin and carboxymethylcellulose on phenolic composition, mangiferin, and antioxidant capacity. Food Chemistry, 221, 258-266. doi:10.1016/j.foodchem.2016.10.080
Lupacchini, M., Mascitti, A., Giachi, G., Tonucci, L., d’ Alessandro, N., Martinez, J., & Colacino, E. (2017). Sonochemistry in non-conventional, green solvents or solvent-free reactions. Tetrahedron, 73(6), 609-653. doi:10.1016/j.tet.2016.12.014
Meneses, M. A., Caputo, G., Scognamiglio, M., Reverchon, E., & Adami, R. (2015). Antioxidant phenolic compounds recovery from Mangifera indica L. by-products by supercritical antisolvent extraction. Journal of Food Engineering, 163, 45-53. doi:10.1016/j.jfoodeng.2015.04.025
Meneses, N. G. T., Martins, S., Teixeira, J. A., & Mussatto, S. I. (2013). Influence of extraction solvents on the recovery of antioxidant phenolic compounds from brewer’s spent grains. Separation and Purification Technology, 108, 152-158. doi:10.1016/j.seppur.2013.02.015
Miller, N. J., Rice-Evans, C., Davies, M. J., Gopinathan, V., & Milner, A. (1993). A Novel Method for Measuring Antioxidant Capacity and its Application to Monitoring the Antioxidant Status in Premature Neonates. Clinical Science, 84(4), 407-412. doi:10.1042/cs0840407
Mokrani, A., & Madani, K. (2016). Effect of solvent, time and temperature on the extraction of phenolic compounds and antioxidant capacity of peach (Prunus persica L.) fruit. Separation and Purification Technology, 162, 68-76. doi:10.1016/j.seppur.2016.01.043
Moreira, G. C., & de Souza Dias, F. (2018). Mixture design and Doehlert matrix for optimization of the ultrasonic assisted extraction of caffeic acid, rutin, catechin and trans-cinnamic acid in Physalis angulata L. and determination by HPLC DAD. Microchemical Journal, 141, 247-252. doi:10.1016/j.microc.2018.04.035
Nguyen, V. T., Bowyer, M. C., Vuong, Q. V., Altena, I. A. V., & Scarlett, C. J. (2015). Phytochemicals and antioxidant capacity of Xao tam phan (Paramignya trimera) root as affected by various solvents and extraction methods. Industrial Crops and Products, 67, 192-200. doi:10.1016/j.indcrop.2015.01.051
Pimentel-Moral, S., Borrás-Linares, I., Lozano-Sánchez, J., Arráez-Román, D., Martínez-Férez, A., & Segura-Carretero, A. (2019). Supercritical CO2 extraction of bioactive compounds from Hibiscus sabdariffa. The Journal of Supercritical Fluids, 147, 213-221. doi:10.1016/j.supflu.2018.11.005
Rezaie, M., Farhoosh, R., Iranshahi, M., Sharif, A., & Golmohamadzadeh, S. (2015). Ultrasonic-assisted extraction of antioxidative compounds from Bene (Pistacia atlantica subsp. mutica) hull using various solvents of different physicochemical properties. Food Chemistry, 173, 577-583. doi:10.1016/j.foodchem.2014.10.081
Rodsamran, P., & Sothornvit, R. (2019). Extraction of phenolic compounds from lime peel waste using ultrasonic-assisted and microwave-assisted extractions. Food Bioscience, 28, 66-73. doi:10.1016/j.fbio.2019.01.017
Santana, Á. L., Queirós, L. D., Martínez, J., & Macedo, G. A. (2019). Pressurized liquid- and supercritical fluid extraction of crude and waste seeds of guarana (Paullinia cupana): Obtaining of bioactive compounds and mathematical modeling. Food and Bioproducts Processing, 117, 194-202. doi:10.1016/j.fbp.2019.07.007
Setyaningsih, W., Saputro, I. E., Carrera, C. A., & Palma, M. (2019). Optimisation of an ultrasound-assisted extraction method for the simultaneous determination of phenolics in rice grains. Food Chemistry, 288, 221-227. doi:10.1016/j.foodchem.2019.02.107
Song, H., Yang, R., Zhao, W., Katiyo, W., Hua, X., & Zhang, W. (2014). Innovative Assistant Extraction of Flavonoids from Pine (Larix olgensis Henry) Needles by High-Density Steam Flash-Explosion. Journal of Agricultural and Food Chemistry, 62(17), 3806-3812. doi:10.1021/jf405412r
Sridhar, K., & Charles, A. L. (2019). In vitro antioxidant activity of Kyoho grape extracts in DPPH and ABTS assays: Estimation methods for EC50 using advanced statistical programs. Food Chemistry, 275, 41-49. doi:10.1016/j.foodchem.2018.09.040
Sumere, B. R., de Souza, M. C., dos Santos, M. P., Bezerra, R. M. N., da Cunha, D. T., Martinez, J., & Rostagno, M. A. (2018). Combining pressurized liquids with ultrasound to improve the extraction of phenolic compounds from pomegranate peel (Punica granatum L.). Ultrasonics Sonochemistry, 48, 151-162. doi:10.1016/j.ultsonch.2018.05.028
Taghizadeh, S. F., Rezaee, R., Davarynejad, G., Karimi, G., Nemati, S. H., & Asili, J. (2018). Phenolic profile and antioxidant activity of Pistacia vera var. Sarakhs hull and kernel extracts: the influence of different solvents. Journal of Food Measurement and Characterization, 12(3), 2138-2144. doi:10.1007/s11694-018-9829-x
Teja, A. S. (1983). Simple method for the calculation of heat capacities of liquid mixtures. Journal of Chemical & Engineering Data, 28(1), 83-85. doi:10.1021/je00031a025
Tiwari, B. K. (2015). Ultrasound: A clean, green extraction technology. TrAC Trends in Analytical Chemistry, 71, 100-109. doi:10.1016/j.trac.2015.04.013
Wen, C., Zhang, J., Zhang, H., Dzah, C. S., Zandile, M., Duan, Y., … Luo, X. (2018). Advances in ultrasound assisted extraction of bioactive compounds from cash crops – A review. Ultrasonics Sonochemistry, 48, 538-549. doi:10.1016/j.ultsonch.2018.07.018
Wijekoon, M. M. J. O., Bhat, R., & Karim, A. A. (2011). Effect of extraction solvents on the phenolic compounds and antioxidant activities of bunga kantan (Etlingera elatior Jack.) inflorescence. Journal of Food Composition and Analysis, 24(4-5), 615-619. doi:10.1016/j.jfca.2010.09.018
Winterfeld, P. H., Scriven, L. E., & Davis, H. T. (1978). An approximate theory of interfacial tensions of multicomponent systems: Applications to binary liquid-vapor tensions. AIChE Journal, 24(6), 1010-1014. doi:10.1002/aic.690240610
Yusof, N. S. M., Babgi, B., Alghamdi, Y., Aksu, M., Madhavan, J., & Ashokkumar, M. (2016). Physical and chemical effects of acoustic cavitation in selected ultrasonic cleaning applications. Ultrasonics Sonochemistry, 29, 568-576. doi:10.1016/j.ultsonch.2015.06.013
[-]