- -

Effect of solvent composition and its interaction with ultrasonic energy on the ultrasound-assisted extraction of phenolic compounds from Mango peels (Mangifera indica L.)

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Effect of solvent composition and its interaction with ultrasonic energy on the ultrasound-assisted extraction of phenolic compounds from Mango peels (Mangifera indica L.)

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Martínez-Ramos, Tania es_ES
dc.contributor.author Benedito Fort, José Javier es_ES
dc.contributor.author Watson, Nicholas James es_ES
dc.contributor.author Ruiz-López, Irving I. es_ES
dc.contributor.author Che-Galicia, Gamaliel es_ES
dc.contributor.author Corona-Jiménez, Edith es_ES
dc.date.accessioned 2021-05-04T03:31:18Z
dc.date.available 2021-05-04T03:31:18Z
dc.date.issued 2020-07 es_ES
dc.identifier.issn 0960-3085 es_ES
dc.identifier.uri http://hdl.handle.net/10251/165894
dc.description.abstract [EN] Ultrasound has been used to intensify the extraction of phenolic compounds from many agro-food products. However, there is still a lack of understanding on how the ultrasonic energy is influenced by blends of different solvents and how this impacts the extraction process. This work studied the effect of ethanol, acetone and hexane blends on the ultrasonic power density (UPD) generated during the extraction of phenolic compounds from Mango peel, using an ultrasonic-assisted extraction (UAE) and a conventional solvent extraction (CSE). A simplex centroid mixture design and a special cubic regression model were used to evaluate the total phenolic compounds (TPC), antioxidant activity (AA) and ultrasonic intensity (UI) as a function of the solvents proportions. The greatest TPC was obtained with the ethanol-acetone blend (60-40%) for CSE (205.08 mg GAE/100 g DM) and UAE (1493.01 mg GAE/100 g DM). Likewise, an increase (avg. 630%) was observed in TPC when the ultrasound was applied for all solvents and their blends. The TPC showed a good correlation (r=0.81) with the UPD, with higher UPD resulting in larger amounts of TPC extracted. Nevertheless, for the ethanol-acetone blend there was a decrease of 14.2% of the AA for the UAE, which could be due to the sonochemical reactions taking place at the high UPD achieved for that blend. The results of this work indicate that the solvent composition and use of ultrasound should be carefully selected to achieve the desired extraction objectives. es_ES
dc.description.sponsorship The authors acknowledge the Ph.D. grant of Tania Martinez Ramos (CVU 580569) from the "Consejo Nacional de Ciencia y Tecnologia (CONACYT)" and the financial support from the Vicerrectoria de Investigacion y Estudios de Posgrado (VIEP-BUAP) through the "Programa Institucional para la Consolidacion de los Cuerpos Academicos y Conformacion de Redes de Investigacion". es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Food and Bioproducts Processing es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Ultrasonic power es_ES
dc.subject Bioactive compounds es_ES
dc.subject Solvent propertie es_ES
dc.subject.classification TECNOLOGIA DE ALIMENTOS es_ES
dc.title Effect of solvent composition and its interaction with ultrasonic energy on the ultrasound-assisted extraction of phenolic compounds from Mango peels (Mangifera indica L.) es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.fbp.2020.03.011 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/CONACyT//CVU-580569/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Tecnología de Alimentos - Departament de Tecnologia d'Aliments es_ES
dc.description.bibliographicCitation Martínez-Ramos, T.; Benedito Fort, JJ.; Watson, NJ.; Ruiz-López, II.; Che-Galicia, G.; Corona-Jiménez, E. (2020). Effect of solvent composition and its interaction with ultrasonic energy on the ultrasound-assisted extraction of phenolic compounds from Mango peels (Mangifera indica L.). Food and Bioproducts Processing. 122:41-54. https://doi.org/10.1016/j.fbp.2020.03.011 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.fbp.2020.03.011 es_ES
dc.description.upvformatpinicio 41 es_ES
dc.description.upvformatpfin 54 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 122 es_ES
dc.relation.pasarela S\412266 es_ES
dc.contributor.funder Benemérita Universidad Autónoma de Puebla es_ES
dc.contributor.funder Consejo Nacional de Ciencia y Tecnología, México es_ES
dc.description.references Abdalla, A. E. M., Darwish, S. M., Ayad, E. H. E., & El-Hamahmy, R. M. (2007). Egyptian mango by-product 1. Compositional quality of mango seed kernel. Food Chemistry, 103(4), 1134-1140. doi:10.1016/j.foodchem.2006.10.017 es_ES
dc.description.references Ajila, C. M., Leelavathi, K., & Prasada Rao, U. J. S. (2008). Improvement of dietary fiber content and antioxidant properties in soft dough biscuits with the incorporation of mango peel powder. Journal of Cereal Science, 48(2), 319-326. doi:10.1016/j.jcs.2007.10.001 es_ES
dc.description.references AJILA, C., NAIDU, K., BHAT, S., & RAO, U. (2007). Bioactive compounds and antioxidant potential of mango peel extract. Food Chemistry, 105(3), 982-988. doi:10.1016/j.foodchem.2007.04.052 es_ES
dc.description.references Arnao, M. B. (2000). Some methodological problems in the determination of antioxidant activity using chromogen radicals: a practical case. Trends in Food Science & Technology, 11(11), 419-421. doi:10.1016/s0924-2244(01)00027-9 es_ES
dc.description.references Brand-Williams, W., Cuvelier, M. E., & Berset, C. (1995). Use of a free radical method to evaluate antioxidant activity. LWT - Food Science and Technology, 28(1), 25-30. doi:10.1016/s0023-6438(95)80008-5 es_ES
dc.description.references Burton-Freeman, B. M., Sandhu, A. K., & Edirisinghe, I. (2017). Mangos and their bioactive components: adding variety to the fruit plate for health. Food & Function, 8(9), 3010-3032. doi:10.1039/c7fo00190h es_ES
dc.description.references Butkhup, L., Samappito, W., & Samappito, S. (2012). Phenolic composition and antioxidant activity of white mulberry (Morus albaL.) fruits. International Journal of Food Science & Technology, 48(5), 934-940. doi:10.1111/ijfs.12044 es_ES
dc.description.references Cassol, L., Rodrigues, E., & Zapata Noreña, C. P. (2019). Extracting phenolic compounds from Hibiscus sabdariffa L. calyx using microwave assisted extraction. Industrial Crops and Products, 133, 168-177. doi:10.1016/j.indcrop.2019.03.023 es_ES
dc.description.references Chemat, F., Rombaut, N., Sicaire, A.-G., Meullemiestre, A., Fabiano-Tixier, A.-S., & Abert-Vian, M. (2017). Ultrasound assisted extraction of food and natural products. Mechanisms, techniques, combinations, protocols and applications. A review. Ultrasonics Sonochemistry, 34, 540-560. doi:10.1016/j.ultsonch.2016.06.035 es_ES
dc.description.references Cheng, X., Zhang, M., Adhikari, B., Islam, M. N., & Xu, B. (2014). Effect of ultrasound irradiation on some freezing parameters of ultrasound-assisted immersion freezing of strawberries. International Journal of Refrigeration, 44, 49-55. doi:10.1016/j.ijrefrig.2014.04.017 es_ES
dc.description.references Chivate, M. M., & Pandit, A. B. (1995). Quantification of cavitation intensity in fluid bulk. Ultrasonics Sonochemistry, 2(1), S19-S25. doi:10.1016/1350-4177(94)00007-f es_ES
dc.description.references Cravotto, G., & Cintas, P. (2006). Power ultrasound in organic synthesis: moving cavitational chemistry from academia to innovative and large-scale applications. Chem. Soc. Rev., 35(2), 180-196. doi:10.1039/b503848k es_ES
dc.description.references Da Porto, C., Porretto, E., & Decorti, D. (2013). Comparison of ultrasound-assisted extraction with conventional extraction methods of oil and polyphenols from grape (Vitis vinifera L.) seeds. Ultrasonics Sonochemistry, 20(4), 1076-1080. doi:10.1016/j.ultsonch.2012.12.002 es_ES
dc.description.references Deng, J., Xu, Z., Xiang, C., Liu, J., Zhou, L., Li, T., … Ding, C. (2017). Comparative evaluation of maceration and ultrasonic-assisted extraction of phenolic compounds from fresh olives. Ultrasonics Sonochemistry, 37, 328-334. doi:10.1016/j.ultsonch.2017.01.023 es_ES
dc.description.references Dias, F. F. G., de Castro, R. J. S., Ohara, A., Nishide, T. G., Bagagli, M. P., & Sato, H. H. (2015). Simplex centroid mixture design to improve l -asparaginase production in solid-state fermentation using agroindustrial wastes. Biocatalysis and Agricultural Biotechnology, 4(4), 528-534. doi:10.1016/j.bcab.2015.09.011 es_ES
dc.description.references Dubie, J., Stancik, A., Morra, M., & Nindo, C. (2013). Antioxidant Extraction from Mustard (Brassica juncea) Seed Meal Using High-Intensity Ultrasound. Journal of Food Science, 78(4), E542-E548. doi:10.1111/1750-3841.12085 es_ES
dc.description.references Fu, L., Xu, B.-T., Xu, X.-R., Gan, R.-Y., Zhang, Y., Xia, E.-Q., & Li, H.-B. (2011). Antioxidant capacities and total phenolic contents of 62 fruits. Food Chemistry, 129(2), 345-350. doi:10.1016/j.foodchem.2011.04.079 es_ES
dc.description.references Gallego, R., Bueno, M., & Herrero, M. (2019). Sub- and supercritical fluid extraction of bioactive compounds from plants, food-by-products, seaweeds and microalgae – An update. TrAC Trends in Analytical Chemistry, 116, 198-213. doi:10.1016/j.trac.2019.04.030 es_ES
dc.description.references Gómez-Caravaca, A. M., López-Cobo, A., Verardo, V., Segura-Carretero, A., & Fernández-Gutiérrez, A. (2016). HPLC-DAD-q-TOF-MS as a powerful platform for the determination of phenolic and other polar compounds in the edible part of mango and its by-products (peel, seed, and seed husk). ELECTROPHORESIS, 37(7-8), 1072-1084. doi:10.1002/elps.201500439 es_ES
dc.description.references González-Centeno, M. R., Knoerzer, K., Sabarez, H., Simal, S., Rosselló, C., & Femenia, A. (2014). Effect of acoustic frequency and power density on the aqueous ultrasonic-assisted extraction of grape pomace (Vitis vinifera L.) – A response surface approach. Ultrasonics Sonochemistry, 21(6), 2176-2184. doi:10.1016/j.ultsonch.2014.01.021 es_ES
dc.description.references Guandalini, B. B. V., Rodrigues, N. P., & Marczak, L. D. F. (2019). Sequential extraction of phenolics and pectin from mango peel assisted by ultrasound. Food Research International, 119, 455-461. doi:10.1016/j.foodres.2018.12.011 es_ES
dc.description.references Gülçin, İ. (2011). Antioxidant activity of food constituents: an overview. Archives of Toxicology, 86(3), 345-391. doi:10.1007/s00204-011-0774-2 es_ES
dc.description.references He, B., Zhang, L.-L., Yue, X.-Y., Liang, J., Jiang, J., Gao, X.-L., & Yue, P.-X. (2016). Optimization of Ultrasound-Assisted Extraction of phenolic compounds and anthocyanins from blueberry ( Vaccinium ashei ) wine pomace. Food Chemistry, 204, 70-76. doi:10.1016/j.foodchem.2016.02.094 es_ES
dc.description.references Hoyos-Arbeláez, J., Blandón-Naranjo, L., Vázquez, M., & Contreras-Calderón, J. (2018). Antioxidant capacity of mango fruit (Mangifera indica). An electrochemical study as an approach to the spectrophotometric methods. Food Chemistry, 266, 435-440. doi:10.1016/j.foodchem.2018.06.044 es_ES
dc.description.references Jahurul, M. H. A., Zaidul, I. S. M., Ghafoor, K., Al-Juhaimi, F. Y., Nyam, K.-L., Norulaini, N. A. N., … Mohd Omar, A. K. (2015). Mango (Mangifera indica L.) by-products and their valuable components: A review. Food Chemistry, 183, 173-180. doi:10.1016/j.foodchem.2015.03.046 es_ES
dc.description.references Kähkönen, M. P., Hopia, A. I., Vuorela, H. J., Rauha, J.-P., Pihlaja, K., Kujala, T. S., & Heinonen, M. (1999). Antioxidant Activity of Plant Extracts Containing Phenolic Compounds. Journal of Agricultural and Food Chemistry, 47(10), 3954-3962. doi:10.1021/jf990146l es_ES
dc.description.references Karadag, A., Ozcelik, B., & Saner, S. (2009). Review of Methods to Determine Antioxidant Capacities. Food Analytical Methods, 2(1), 41-60. doi:10.1007/s12161-008-9067-7 es_ES
dc.description.references Kendall, J., & Monroe, K. P. (1917). THE VISCOSITY OF LIQUIDS. II. THE VISCOSITY-COMPOSITION CURVE FOR IDEAL LIQUID MIXTURES.1. Journal of the American Chemical Society, 39(9), 1787-1802. doi:10.1021/ja02254a001 es_ES
dc.description.references Khemakhem, I., Ahmad-Qasem, M. H., Catalán, E. B., Micol, V., García-Pérez, J. V., Ayadi, M. A., & Bouaziz, M. (2017). Kinetic improvement of olive leaves’ bioactive compounds extraction by using power ultrasound in a wide temperature range. Ultrasonics Sonochemistry, 34, 466-473. doi:10.1016/j.ultsonch.2016.06.010 es_ES
dc.description.references Kugel, R. W. (1998). Raoult’s Law: Binary Liquid-Vapor Phase Diagrams: A Simple Physical Chemistry Experiment. Journal of Chemical Education, 75(9), 1125. doi:10.1021/ed075p1125 es_ES
dc.description.references Li, H., Pordesimo, L., & Weiss, J. (2004). High intensity ultrasound-assisted extraction of oil from soybeans. Food Research International, 37(7), 731-738. doi:10.1016/j.foodres.2004.02.016 es_ES
dc.description.references Lim, S., Choi, A.-H., Kwon, M., Joung, E.-J., Shin, T., Lee, S.-G., … Kim, H.-R. (2019). Evaluation of antioxidant activities of various solvent extract from Sargassum serratifolium and its major antioxidant components. Food Chemistry, 278, 178-184. doi:10.1016/j.foodchem.2018.11.058 es_ES
dc.description.references Liu, Y., Wei, S., Wu, M., & Yang, S. (2017). Phenolic compounds from date pits: ultrasonic-assisted extraction, antioxidant activity and component identification. Journal of Food Measurement and Characterization, 12(2), 967-973. doi:10.1007/s11694-017-9711-2 es_ES
dc.description.references Lobo, F. A., Nascimento, M. A., Domingues, J. R., Falcão, D. Q., Hernanz, D., Heredia, F. J., & de Lima Araujo, K. G. (2017). Foam mat drying of Tommy Atkins mango: Effects of air temperature and concentrations of soy lecithin and carboxymethylcellulose on phenolic composition, mangiferin, and antioxidant capacity. Food Chemistry, 221, 258-266. doi:10.1016/j.foodchem.2016.10.080 es_ES
dc.description.references Lupacchini, M., Mascitti, A., Giachi, G., Tonucci, L., d’ Alessandro, N., Martinez, J., & Colacino, E. (2017). Sonochemistry in non-conventional, green solvents or solvent-free reactions. Tetrahedron, 73(6), 609-653. doi:10.1016/j.tet.2016.12.014 es_ES
dc.description.references Meneses, M. A., Caputo, G., Scognamiglio, M., Reverchon, E., & Adami, R. (2015). Antioxidant phenolic compounds recovery from Mangifera indica L. by-products by supercritical antisolvent extraction. Journal of Food Engineering, 163, 45-53. doi:10.1016/j.jfoodeng.2015.04.025 es_ES
dc.description.references Meneses, N. G. T., Martins, S., Teixeira, J. A., & Mussatto, S. I. (2013). Influence of extraction solvents on the recovery of antioxidant phenolic compounds from brewer’s spent grains. Separation and Purification Technology, 108, 152-158. doi:10.1016/j.seppur.2013.02.015 es_ES
dc.description.references Miller, N. J., Rice-Evans, C., Davies, M. J., Gopinathan, V., & Milner, A. (1993). A Novel Method for Measuring Antioxidant Capacity and its Application to Monitoring the Antioxidant Status in Premature Neonates. Clinical Science, 84(4), 407-412. doi:10.1042/cs0840407 es_ES
dc.description.references Mokrani, A., & Madani, K. (2016). Effect of solvent, time and temperature on the extraction of phenolic compounds and antioxidant capacity of peach (Prunus persica L.) fruit. Separation and Purification Technology, 162, 68-76. doi:10.1016/j.seppur.2016.01.043 es_ES
dc.description.references Moreira, G. C., & de Souza Dias, F. (2018). Mixture design and Doehlert matrix for optimization of the ultrasonic assisted extraction of caffeic acid, rutin, catechin and trans-cinnamic acid in Physalis angulata L. and determination by HPLC DAD. Microchemical Journal, 141, 247-252. doi:10.1016/j.microc.2018.04.035 es_ES
dc.description.references Nguyen, V. T., Bowyer, M. C., Vuong, Q. V., Altena, I. A. V., & Scarlett, C. J. (2015). Phytochemicals and antioxidant capacity of Xao tam phan (Paramignya trimera) root as affected by various solvents and extraction methods. Industrial Crops and Products, 67, 192-200. doi:10.1016/j.indcrop.2015.01.051 es_ES
dc.description.references Pimentel-Moral, S., Borrás-Linares, I., Lozano-Sánchez, J., Arráez-Román, D., Martínez-Férez, A., & Segura-Carretero, A. (2019). Supercritical CO2 extraction of bioactive compounds from Hibiscus sabdariffa. The Journal of Supercritical Fluids, 147, 213-221. doi:10.1016/j.supflu.2018.11.005 es_ES
dc.description.references Rezaie, M., Farhoosh, R., Iranshahi, M., Sharif, A., & Golmohamadzadeh, S. (2015). Ultrasonic-assisted extraction of antioxidative compounds from Bene (Pistacia atlantica subsp. mutica) hull using various solvents of different physicochemical properties. Food Chemistry, 173, 577-583. doi:10.1016/j.foodchem.2014.10.081 es_ES
dc.description.references Rodsamran, P., & Sothornvit, R. (2019). Extraction of phenolic compounds from lime peel waste using ultrasonic-assisted and microwave-assisted extractions. Food Bioscience, 28, 66-73. doi:10.1016/j.fbio.2019.01.017 es_ES
dc.description.references Santana, Á. L., Queirós, L. D., Martínez, J., & Macedo, G. A. (2019). Pressurized liquid- and supercritical fluid extraction of crude and waste seeds of guarana (Paullinia cupana): Obtaining of bioactive compounds and mathematical modeling. Food and Bioproducts Processing, 117, 194-202. doi:10.1016/j.fbp.2019.07.007 es_ES
dc.description.references Setyaningsih, W., Saputro, I. E., Carrera, C. A., & Palma, M. (2019). Optimisation of an ultrasound-assisted extraction method for the simultaneous determination of phenolics in rice grains. Food Chemistry, 288, 221-227. doi:10.1016/j.foodchem.2019.02.107 es_ES
dc.description.references Song, H., Yang, R., Zhao, W., Katiyo, W., Hua, X., & Zhang, W. (2014). Innovative Assistant Extraction of Flavonoids from Pine (Larix olgensis Henry) Needles by High-Density Steam Flash-Explosion. Journal of Agricultural and Food Chemistry, 62(17), 3806-3812. doi:10.1021/jf405412r es_ES
dc.description.references Sridhar, K., & Charles, A. L. (2019). In vitro antioxidant activity of Kyoho grape extracts in DPPH and ABTS assays: Estimation methods for EC50 using advanced statistical programs. Food Chemistry, 275, 41-49. doi:10.1016/j.foodchem.2018.09.040 es_ES
dc.description.references Sumere, B. R., de Souza, M. C., dos Santos, M. P., Bezerra, R. M. N., da Cunha, D. T., Martinez, J., & Rostagno, M. A. (2018). Combining pressurized liquids with ultrasound to improve the extraction of phenolic compounds from pomegranate peel (Punica granatum L.). Ultrasonics Sonochemistry, 48, 151-162. doi:10.1016/j.ultsonch.2018.05.028 es_ES
dc.description.references Taghizadeh, S. F., Rezaee, R., Davarynejad, G., Karimi, G., Nemati, S. H., & Asili, J. (2018). Phenolic profile and antioxidant activity of Pistacia vera var. Sarakhs hull and kernel extracts: the influence of different solvents. Journal of Food Measurement and Characterization, 12(3), 2138-2144. doi:10.1007/s11694-018-9829-x es_ES
dc.description.references Teja, A. S. (1983). Simple method for the calculation of heat capacities of liquid mixtures. Journal of Chemical & Engineering Data, 28(1), 83-85. doi:10.1021/je00031a025 es_ES
dc.description.references Tiwari, B. K. (2015). Ultrasound: A clean, green extraction technology. TrAC Trends in Analytical Chemistry, 71, 100-109. doi:10.1016/j.trac.2015.04.013 es_ES
dc.description.references Wen, C., Zhang, J., Zhang, H., Dzah, C. S., Zandile, M., Duan, Y., … Luo, X. (2018). Advances in ultrasound assisted extraction of bioactive compounds from cash crops – A review. Ultrasonics Sonochemistry, 48, 538-549. doi:10.1016/j.ultsonch.2018.07.018 es_ES
dc.description.references Wijekoon, M. M. J. O., Bhat, R., & Karim, A. A. (2011). Effect of extraction solvents on the phenolic compounds and antioxidant activities of bunga kantan (Etlingera elatior Jack.) inflorescence. Journal of Food Composition and Analysis, 24(4-5), 615-619. doi:10.1016/j.jfca.2010.09.018 es_ES
dc.description.references Winterfeld, P. H., Scriven, L. E., & Davis, H. T. (1978). An approximate theory of interfacial tensions of multicomponent systems: Applications to binary liquid-vapor tensions. AIChE Journal, 24(6), 1010-1014. doi:10.1002/aic.690240610 es_ES
dc.description.references Yusof, N. S. M., Babgi, B., Alghamdi, Y., Aksu, M., Madhavan, J., & Ashokkumar, M. (2016). Physical and chemical effects of acoustic cavitation in selected ultrasonic cleaning applications. Ultrasonics Sonochemistry, 29, 568-576. doi:10.1016/j.ultsonch.2015.06.013 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem