- -

Effect of solvent composition and its interaction with ultrasonic energy on the ultrasound-assisted extraction of phenolic compounds from Mango peels (Mangifera indica L.)

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Effect of solvent composition and its interaction with ultrasonic energy on the ultrasound-assisted extraction of phenolic compounds from Mango peels (Mangifera indica L.)

Mostrar el registro completo del ítem

Martínez-Ramos, T.; Benedito Fort, JJ.; Watson, NJ.; Ruiz-López, II.; Che-Galicia, G.; Corona-Jiménez, E. (2020). Effect of solvent composition and its interaction with ultrasonic energy on the ultrasound-assisted extraction of phenolic compounds from Mango peels (Mangifera indica L.). Food and Bioproducts Processing. 122:41-54. https://doi.org/10.1016/j.fbp.2020.03.011

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/165894

Ficheros en el ítem

Metadatos del ítem

Título: Effect of solvent composition and its interaction with ultrasonic energy on the ultrasound-assisted extraction of phenolic compounds from Mango peels (Mangifera indica L.)
Autor: Martínez-Ramos, Tania Benedito Fort, José Javier Watson, Nicholas James Ruiz-López, Irving I. Che-Galicia, Gamaliel Corona-Jiménez, Edith
Entidad UPV: Universitat Politècnica de València. Departamento de Tecnología de Alimentos - Departament de Tecnologia d'Aliments
Fecha difusión:
Resumen:
[EN] Ultrasound has been used to intensify the extraction of phenolic compounds from many agro-food products. However, there is still a lack of understanding on how the ultrasonic energy is influenced by blends of different ...[+]
Palabras clave: Ultrasonic power , Bioactive compounds , Solvent propertie
Derechos de uso: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Fuente:
Food and Bioproducts Processing. (issn: 0960-3085 )
DOI: 10.1016/j.fbp.2020.03.011
Editorial:
Elsevier
Versión del editor: https://doi.org/10.1016/j.fbp.2020.03.011
Código del Proyecto:
info:eu-repo/grantAgreement/CONACyT//CVU-580569/
Agradecimientos:
The authors acknowledge the Ph.D. grant of Tania Martinez Ramos (CVU 580569) from the "Consejo Nacional de Ciencia y Tecnologia (CONACYT)" and the financial support from the Vicerrectoria de Investigacion y Estudios de ...[+]
Tipo: Artículo

References

Abdalla, A. E. M., Darwish, S. M., Ayad, E. H. E., & El-Hamahmy, R. M. (2007). Egyptian mango by-product 1. Compositional quality of mango seed kernel. Food Chemistry, 103(4), 1134-1140. doi:10.1016/j.foodchem.2006.10.017

Ajila, C. M., Leelavathi, K., & Prasada Rao, U. J. S. (2008). Improvement of dietary fiber content and antioxidant properties in soft dough biscuits with the incorporation of mango peel powder. Journal of Cereal Science, 48(2), 319-326. doi:10.1016/j.jcs.2007.10.001

AJILA, C., NAIDU, K., BHAT, S., & RAO, U. (2007). Bioactive compounds and antioxidant potential of mango peel extract. Food Chemistry, 105(3), 982-988. doi:10.1016/j.foodchem.2007.04.052 [+]
Abdalla, A. E. M., Darwish, S. M., Ayad, E. H. E., & El-Hamahmy, R. M. (2007). Egyptian mango by-product 1. Compositional quality of mango seed kernel. Food Chemistry, 103(4), 1134-1140. doi:10.1016/j.foodchem.2006.10.017

Ajila, C. M., Leelavathi, K., & Prasada Rao, U. J. S. (2008). Improvement of dietary fiber content and antioxidant properties in soft dough biscuits with the incorporation of mango peel powder. Journal of Cereal Science, 48(2), 319-326. doi:10.1016/j.jcs.2007.10.001

AJILA, C., NAIDU, K., BHAT, S., & RAO, U. (2007). Bioactive compounds and antioxidant potential of mango peel extract. Food Chemistry, 105(3), 982-988. doi:10.1016/j.foodchem.2007.04.052

Arnao, M. B. (2000). Some methodological problems in the determination of antioxidant activity using chromogen radicals: a practical case. Trends in Food Science & Technology, 11(11), 419-421. doi:10.1016/s0924-2244(01)00027-9

Brand-Williams, W., Cuvelier, M. E., & Berset, C. (1995). Use of a free radical method to evaluate antioxidant activity. LWT - Food Science and Technology, 28(1), 25-30. doi:10.1016/s0023-6438(95)80008-5

Burton-Freeman, B. M., Sandhu, A. K., & Edirisinghe, I. (2017). Mangos and their bioactive components: adding variety to the fruit plate for health. Food & Function, 8(9), 3010-3032. doi:10.1039/c7fo00190h

Butkhup, L., Samappito, W., & Samappito, S. (2012). Phenolic composition and antioxidant activity of white mulberry (Morus albaL.) fruits. International Journal of Food Science & Technology, 48(5), 934-940. doi:10.1111/ijfs.12044

Cassol, L., Rodrigues, E., & Zapata Noreña, C. P. (2019). Extracting phenolic compounds from Hibiscus sabdariffa L. calyx using microwave assisted extraction. Industrial Crops and Products, 133, 168-177. doi:10.1016/j.indcrop.2019.03.023

Chemat, F., Rombaut, N., Sicaire, A.-G., Meullemiestre, A., Fabiano-Tixier, A.-S., & Abert-Vian, M. (2017). Ultrasound assisted extraction of food and natural products. Mechanisms, techniques, combinations, protocols and applications. A review. Ultrasonics Sonochemistry, 34, 540-560. doi:10.1016/j.ultsonch.2016.06.035

Cheng, X., Zhang, M., Adhikari, B., Islam, M. N., & Xu, B. (2014). Effect of ultrasound irradiation on some freezing parameters of ultrasound-assisted immersion freezing of strawberries. International Journal of Refrigeration, 44, 49-55. doi:10.1016/j.ijrefrig.2014.04.017

Chivate, M. M., & Pandit, A. B. (1995). Quantification of cavitation intensity in fluid bulk. Ultrasonics Sonochemistry, 2(1), S19-S25. doi:10.1016/1350-4177(94)00007-f

Cravotto, G., & Cintas, P. (2006). Power ultrasound in organic synthesis: moving cavitational chemistry from academia to innovative and large-scale applications. Chem. Soc. Rev., 35(2), 180-196. doi:10.1039/b503848k

Da Porto, C., Porretto, E., & Decorti, D. (2013). Comparison of ultrasound-assisted extraction with conventional extraction methods of oil and polyphenols from grape (Vitis vinifera L.) seeds. Ultrasonics Sonochemistry, 20(4), 1076-1080. doi:10.1016/j.ultsonch.2012.12.002

Deng, J., Xu, Z., Xiang, C., Liu, J., Zhou, L., Li, T., … Ding, C. (2017). Comparative evaluation of maceration and ultrasonic-assisted extraction of phenolic compounds from fresh olives. Ultrasonics Sonochemistry, 37, 328-334. doi:10.1016/j.ultsonch.2017.01.023

Dias, F. F. G., de Castro, R. J. S., Ohara, A., Nishide, T. G., Bagagli, M. P., & Sato, H. H. (2015). Simplex centroid mixture design to improve l -asparaginase production in solid-state fermentation using agroindustrial wastes. Biocatalysis and Agricultural Biotechnology, 4(4), 528-534. doi:10.1016/j.bcab.2015.09.011

Dubie, J., Stancik, A., Morra, M., & Nindo, C. (2013). Antioxidant Extraction from Mustard (Brassica juncea) Seed Meal Using High-Intensity Ultrasound. Journal of Food Science, 78(4), E542-E548. doi:10.1111/1750-3841.12085

Fu, L., Xu, B.-T., Xu, X.-R., Gan, R.-Y., Zhang, Y., Xia, E.-Q., & Li, H.-B. (2011). Antioxidant capacities and total phenolic contents of 62 fruits. Food Chemistry, 129(2), 345-350. doi:10.1016/j.foodchem.2011.04.079

Gallego, R., Bueno, M., & Herrero, M. (2019). Sub- and supercritical fluid extraction of bioactive compounds from plants, food-by-products, seaweeds and microalgae – An update. TrAC Trends in Analytical Chemistry, 116, 198-213. doi:10.1016/j.trac.2019.04.030

Gómez-Caravaca, A. M., López-Cobo, A., Verardo, V., Segura-Carretero, A., & Fernández-Gutiérrez, A. (2016). HPLC-DAD-q-TOF-MS as a powerful platform for the determination of phenolic and other polar compounds in the edible part of mango and its by-products (peel, seed, and seed husk). ELECTROPHORESIS, 37(7-8), 1072-1084. doi:10.1002/elps.201500439

González-Centeno, M. R., Knoerzer, K., Sabarez, H., Simal, S., Rosselló, C., & Femenia, A. (2014). Effect of acoustic frequency and power density on the aqueous ultrasonic-assisted extraction of grape pomace (Vitis vinifera L.) – A response surface approach. Ultrasonics Sonochemistry, 21(6), 2176-2184. doi:10.1016/j.ultsonch.2014.01.021

Guandalini, B. B. V., Rodrigues, N. P., & Marczak, L. D. F. (2019). Sequential extraction of phenolics and pectin from mango peel assisted by ultrasound. Food Research International, 119, 455-461. doi:10.1016/j.foodres.2018.12.011

Gülçin, İ. (2011). Antioxidant activity of food constituents: an overview. Archives of Toxicology, 86(3), 345-391. doi:10.1007/s00204-011-0774-2

He, B., Zhang, L.-L., Yue, X.-Y., Liang, J., Jiang, J., Gao, X.-L., & Yue, P.-X. (2016). Optimization of Ultrasound-Assisted Extraction of phenolic compounds and anthocyanins from blueberry ( Vaccinium ashei ) wine pomace. Food Chemistry, 204, 70-76. doi:10.1016/j.foodchem.2016.02.094

Hoyos-Arbeláez, J., Blandón-Naranjo, L., Vázquez, M., & Contreras-Calderón, J. (2018). Antioxidant capacity of mango fruit (Mangifera indica). An electrochemical study as an approach to the spectrophotometric methods. Food Chemistry, 266, 435-440. doi:10.1016/j.foodchem.2018.06.044

Jahurul, M. H. A., Zaidul, I. S. M., Ghafoor, K., Al-Juhaimi, F. Y., Nyam, K.-L., Norulaini, N. A. N., … Mohd Omar, A. K. (2015). Mango (Mangifera indica L.) by-products and their valuable components: A review. Food Chemistry, 183, 173-180. doi:10.1016/j.foodchem.2015.03.046

Kähkönen, M. P., Hopia, A. I., Vuorela, H. J., Rauha, J.-P., Pihlaja, K., Kujala, T. S., & Heinonen, M. (1999). Antioxidant Activity of Plant Extracts Containing Phenolic Compounds. Journal of Agricultural and Food Chemistry, 47(10), 3954-3962. doi:10.1021/jf990146l

Karadag, A., Ozcelik, B., & Saner, S. (2009). Review of Methods to Determine Antioxidant Capacities. Food Analytical Methods, 2(1), 41-60. doi:10.1007/s12161-008-9067-7

Kendall, J., & Monroe, K. P. (1917). THE VISCOSITY OF LIQUIDS. II. THE VISCOSITY-COMPOSITION CURVE FOR IDEAL LIQUID MIXTURES.1. Journal of the American Chemical Society, 39(9), 1787-1802. doi:10.1021/ja02254a001

Khemakhem, I., Ahmad-Qasem, M. H., Catalán, E. B., Micol, V., García-Pérez, J. V., Ayadi, M. A., & Bouaziz, M. (2017). Kinetic improvement of olive leaves’ bioactive compounds extraction by using power ultrasound in a wide temperature range. Ultrasonics Sonochemistry, 34, 466-473. doi:10.1016/j.ultsonch.2016.06.010

Kugel, R. W. (1998). Raoult’s Law: Binary Liquid-Vapor Phase Diagrams: A Simple Physical Chemistry Experiment. Journal of Chemical Education, 75(9), 1125. doi:10.1021/ed075p1125

Li, H., Pordesimo, L., & Weiss, J. (2004). High intensity ultrasound-assisted extraction of oil from soybeans. Food Research International, 37(7), 731-738. doi:10.1016/j.foodres.2004.02.016

Lim, S., Choi, A.-H., Kwon, M., Joung, E.-J., Shin, T., Lee, S.-G., … Kim, H.-R. (2019). Evaluation of antioxidant activities of various solvent extract from Sargassum serratifolium and its major antioxidant components. Food Chemistry, 278, 178-184. doi:10.1016/j.foodchem.2018.11.058

Liu, Y., Wei, S., Wu, M., & Yang, S. (2017). Phenolic compounds from date pits: ultrasonic-assisted extraction, antioxidant activity and component identification. Journal of Food Measurement and Characterization, 12(2), 967-973. doi:10.1007/s11694-017-9711-2

Lobo, F. A., Nascimento, M. A., Domingues, J. R., Falcão, D. Q., Hernanz, D., Heredia, F. J., & de Lima Araujo, K. G. (2017). Foam mat drying of Tommy Atkins mango: Effects of air temperature and concentrations of soy lecithin and carboxymethylcellulose on phenolic composition, mangiferin, and antioxidant capacity. Food Chemistry, 221, 258-266. doi:10.1016/j.foodchem.2016.10.080

Lupacchini, M., Mascitti, A., Giachi, G., Tonucci, L., d’ Alessandro, N., Martinez, J., & Colacino, E. (2017). Sonochemistry in non-conventional, green solvents or solvent-free reactions. Tetrahedron, 73(6), 609-653. doi:10.1016/j.tet.2016.12.014

Meneses, M. A., Caputo, G., Scognamiglio, M., Reverchon, E., & Adami, R. (2015). Antioxidant phenolic compounds recovery from Mangifera indica L. by-products by supercritical antisolvent extraction. Journal of Food Engineering, 163, 45-53. doi:10.1016/j.jfoodeng.2015.04.025

Meneses, N. G. T., Martins, S., Teixeira, J. A., & Mussatto, S. I. (2013). Influence of extraction solvents on the recovery of antioxidant phenolic compounds from brewer’s spent grains. Separation and Purification Technology, 108, 152-158. doi:10.1016/j.seppur.2013.02.015

Miller, N. J., Rice-Evans, C., Davies, M. J., Gopinathan, V., & Milner, A. (1993). A Novel Method for Measuring Antioxidant Capacity and its Application to Monitoring the Antioxidant Status in Premature Neonates. Clinical Science, 84(4), 407-412. doi:10.1042/cs0840407

Mokrani, A., & Madani, K. (2016). Effect of solvent, time and temperature on the extraction of phenolic compounds and antioxidant capacity of peach (Prunus persica L.) fruit. Separation and Purification Technology, 162, 68-76. doi:10.1016/j.seppur.2016.01.043

Moreira, G. C., & de Souza Dias, F. (2018). Mixture design and Doehlert matrix for optimization of the ultrasonic assisted extraction of caffeic acid, rutin, catechin and trans-cinnamic acid in Physalis angulata L. and determination by HPLC DAD. Microchemical Journal, 141, 247-252. doi:10.1016/j.microc.2018.04.035

Nguyen, V. T., Bowyer, M. C., Vuong, Q. V., Altena, I. A. V., & Scarlett, C. J. (2015). Phytochemicals and antioxidant capacity of Xao tam phan (Paramignya trimera) root as affected by various solvents and extraction methods. Industrial Crops and Products, 67, 192-200. doi:10.1016/j.indcrop.2015.01.051

Pimentel-Moral, S., Borrás-Linares, I., Lozano-Sánchez, J., Arráez-Román, D., Martínez-Férez, A., & Segura-Carretero, A. (2019). Supercritical CO2 extraction of bioactive compounds from Hibiscus sabdariffa. The Journal of Supercritical Fluids, 147, 213-221. doi:10.1016/j.supflu.2018.11.005

Rezaie, M., Farhoosh, R., Iranshahi, M., Sharif, A., & Golmohamadzadeh, S. (2015). Ultrasonic-assisted extraction of antioxidative compounds from Bene (Pistacia atlantica subsp. mutica) hull using various solvents of different physicochemical properties. Food Chemistry, 173, 577-583. doi:10.1016/j.foodchem.2014.10.081

Rodsamran, P., & Sothornvit, R. (2019). Extraction of phenolic compounds from lime peel waste using ultrasonic-assisted and microwave-assisted extractions. Food Bioscience, 28, 66-73. doi:10.1016/j.fbio.2019.01.017

Santana, Á. L., Queirós, L. D., Martínez, J., & Macedo, G. A. (2019). Pressurized liquid- and supercritical fluid extraction of crude and waste seeds of guarana (Paullinia cupana): Obtaining of bioactive compounds and mathematical modeling. Food and Bioproducts Processing, 117, 194-202. doi:10.1016/j.fbp.2019.07.007

Setyaningsih, W., Saputro, I. E., Carrera, C. A., & Palma, M. (2019). Optimisation of an ultrasound-assisted extraction method for the simultaneous determination of phenolics in rice grains. Food Chemistry, 288, 221-227. doi:10.1016/j.foodchem.2019.02.107

Song, H., Yang, R., Zhao, W., Katiyo, W., Hua, X., & Zhang, W. (2014). Innovative Assistant Extraction of Flavonoids from Pine (Larix olgensis Henry) Needles by High-Density Steam Flash-Explosion. Journal of Agricultural and Food Chemistry, 62(17), 3806-3812. doi:10.1021/jf405412r

Sridhar, K., & Charles, A. L. (2019). In vitro antioxidant activity of Kyoho grape extracts in DPPH and ABTS assays: Estimation methods for EC50 using advanced statistical programs. Food Chemistry, 275, 41-49. doi:10.1016/j.foodchem.2018.09.040

Sumere, B. R., de Souza, M. C., dos Santos, M. P., Bezerra, R. M. N., da Cunha, D. T., Martinez, J., & Rostagno, M. A. (2018). Combining pressurized liquids with ultrasound to improve the extraction of phenolic compounds from pomegranate peel (Punica granatum L.). Ultrasonics Sonochemistry, 48, 151-162. doi:10.1016/j.ultsonch.2018.05.028

Taghizadeh, S. F., Rezaee, R., Davarynejad, G., Karimi, G., Nemati, S. H., & Asili, J. (2018). Phenolic profile and antioxidant activity of Pistacia vera var. Sarakhs hull and kernel extracts: the influence of different solvents. Journal of Food Measurement and Characterization, 12(3), 2138-2144. doi:10.1007/s11694-018-9829-x

Teja, A. S. (1983). Simple method for the calculation of heat capacities of liquid mixtures. Journal of Chemical & Engineering Data, 28(1), 83-85. doi:10.1021/je00031a025

Tiwari, B. K. (2015). Ultrasound: A clean, green extraction technology. TrAC Trends in Analytical Chemistry, 71, 100-109. doi:10.1016/j.trac.2015.04.013

Wen, C., Zhang, J., Zhang, H., Dzah, C. S., Zandile, M., Duan, Y., … Luo, X. (2018). Advances in ultrasound assisted extraction of bioactive compounds from cash crops – A review. Ultrasonics Sonochemistry, 48, 538-549. doi:10.1016/j.ultsonch.2018.07.018

Wijekoon, M. M. J. O., Bhat, R., & Karim, A. A. (2011). Effect of extraction solvents on the phenolic compounds and antioxidant activities of bunga kantan (Etlingera elatior Jack.) inflorescence. Journal of Food Composition and Analysis, 24(4-5), 615-619. doi:10.1016/j.jfca.2010.09.018

Winterfeld, P. H., Scriven, L. E., & Davis, H. T. (1978). An approximate theory of interfacial tensions of multicomponent systems: Applications to binary liquid-vapor tensions. AIChE Journal, 24(6), 1010-1014. doi:10.1002/aic.690240610

Yusof, N. S. M., Babgi, B., Alghamdi, Y., Aksu, M., Madhavan, J., & Ashokkumar, M. (2016). Physical and chemical effects of acoustic cavitation in selected ultrasonic cleaning applications. Ultrasonics Sonochemistry, 29, 568-576. doi:10.1016/j.ultsonch.2015.06.013

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem