- -

Engineered 3D hydrogels with full-length fibronectin that sequester and present growth factors

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Engineered 3D hydrogels with full-length fibronectin that sequester and present growth factors

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Trujillo-Muñoz, Sara es_ES
dc.contributor.author González-García, Cristina es_ES
dc.contributor.author Rico Tortosa, Patricia María es_ES
dc.contributor.author Reid, Andrew es_ES
dc.contributor.author Windmill, James es_ES
dc.contributor.author Dalby, Matthew J. es_ES
dc.contributor.author Salmerón Sánchez, Manuel es_ES
dc.date.accessioned 2021-05-05T03:31:50Z
dc.date.available 2021-05-05T03:31:50Z
dc.date.issued 2020-09 es_ES
dc.identifier.issn 0142-9612 es_ES
dc.identifier.uri http://hdl.handle.net/10251/165955
dc.description.abstract [EN] Extracellular matrix (ECM)-derived matrices such as Matrigel are used to culture numerous cell types in vitro as they recapitulate ECM properties that support cell growth, organisation, migration and differentiation. These ECM-derived matrices contain various growth factors which make them highly bioactive. However, they suffer lot-to-lot variability, undefined composition and lack of controlled physical properties. There is a need to develop rationally designed biomaterials that can also recapitulate ECM roles. Here, we report the development of fibronectin (FN)-based 3D hydrogels of controlled stiffness and degradability that incorporate full-length FN to enable solid-phase presentation of growth factors in a physiological manner. We demonstrate, in vitro and in vivo, the effect of incorporating vascular endothelial growth factor (VEGF) and bone morphogenetic protein 2 (BMP2) in these hydrogels to enhance angiogenesis and bone regeneration, respectively. These hydrogels represent a step-change in the design of well-defined, reproducible, synthetic microenvironments for 3D cell culture that incorporate growth factors to achieve functional effects. es_ES
dc.description.sponsorship This study was supported by the UK Regenerative Medicine Platform (MRC grant MR/L022710/1), the UK Engineering and Physical Sciences Research Council (EPSRC EP/P001114/1) and a programme grant from the Sir Bobby Charlton Foundation. mu CT work was supported by the European Research Council (ERC) under the European Union's Seventh Framework Programme (FP7/2007-2013) (grant agreement No. [615030]). S.T. acknowledges support from the University of Glasgow through their internal scholarship funding program. We thank the support of David Adams (Anatomy lab, University of Glasgow) and the Biological Services and Veterinary Research Facility (University of Glasagow) for their assistance. es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Biomaterials es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Hydrogels es_ES
dc.subject Growth factors es_ES
dc.subject Fibronectin es_ES
dc.subject Poly(ethylene) glycol es_ES
dc.subject Bone es_ES
dc.subject Vascularisation es_ES
dc.subject.classification FISICA APLICADA es_ES
dc.title Engineered 3D hydrogels with full-length fibronectin that sequester and present growth factors es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.biomaterials.2020.120104 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/FP7/615030/EU/Soft and Small: Acoustic Transducers Inspired by Nature/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UKRI//EP%2FP001114%2F1/GB/Engineering growth factor microenvironments - a new therapeutic paradigm for regenerative medicine/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UKRI//MR%2FL022710%2F1/GB/Synergistic microenvironments for non-union bone defects/
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada es_ES
dc.contributor.affiliation Universitat Politècnica de València. Centro de Biomateriales e Ingeniería Tisular - Centre de Biomaterials i Enginyeria Tissular es_ES
dc.description.bibliographicCitation Trujillo-Muñoz, S.; González-García, C.; Rico Tortosa, PM.; Reid, A.; Windmill, J.; Dalby, MJ.; Salmerón Sánchez, M. (2020). Engineered 3D hydrogels with full-length fibronectin that sequester and present growth factors. Biomaterials. 252:1-15. https://doi.org/10.1016/j.biomaterials.2020.120104 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.biomaterials.2020.120104 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 15 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 252 es_ES
dc.identifier.pmid 32422492 es_ES
dc.relation.pasarela S\434898 es_ES
dc.contributor.funder European Commission es_ES
dc.contributor.funder UK Research and Innovation es_ES
dc.contributor.funder University of Glasgow es_ES
dc.contributor.funder Sir Bobby Charlton Foundation es_ES
dc.contributor.funder UK Regenerative Medicine Platform es_ES
dc.contributor.funder Engineering and Physical Sciences Research Council, Reino Unido es_ES
dc.description.references Jarad, M., Kuczynski, E. A., Morrison, J., Viloria-Petit, A. M., & Coomber, B. L. (2017). Release of endothelial cell associated VEGFR2 during TGF-β modulated angiogenesis in vitro. BMC Cell Biology, 18(1). doi:10.1186/s12860-017-0127-y es_ES
dc.description.references Spence, J. R., Mayhew, C. N., Rankin, S. A., Kuhar, M. F., Vallance, J. E., Tolle, K., … Wells, J. M. (2010). Directed differentiation of human pluripotent stem cells into intestinal tissue in vitro. Nature, 470(7332), 105-109. doi:10.1038/nature09691 es_ES
dc.description.references Yang, S.-J., Son, J. K., Hong, S. J., Lee, N.-E., Shin, D. Y., Park, S. H., … Kim, S. J. (2018). Ectopic vascularized bone formation by human umbilical cord-derived mesenchymal stromal cells expressing bone morphogenetic factor-2 and endothelial cells. Biochemical and Biophysical Research Communications, 504(1), 302-308. doi:10.1016/j.bbrc.2018.08.179 es_ES
dc.description.references Hughes, C. S., Postovit, L. M., & Lajoie, G. A. (2010). Matrigel: A complex protein mixture required for optimal growth of cell culture. PROTEOMICS, 10(9), 1886-1890. doi:10.1002/pmic.200900758 es_ES
dc.description.references Dalby, M. J., García, A. J., & Salmeron-Sanchez, M. (2018). Receptor control in mesenchymal stem cell engineering. Nature Reviews Materials, 3(3). doi:10.1038/natrevmats.2017.91 es_ES
dc.description.references Martino, M. M., Brkic, S., Bovo, E., Burger, M., Schaefer, D. J., Wolff, T., … Banfi, A. (2015). Extracellular Matrix and Growth Factor Engineering for Controlled Angiogenesis in Regenerative Medicine. Frontiers in Bioengineering and Biotechnology, 3. doi:10.3389/fbioe.2015.00045 es_ES
dc.description.references Mitchell, A. C., Briquez, P. S., Hubbell, J. A., & Cochran, J. R. (2016). Engineering growth factors for regenerative medicine applications. Acta Biomaterialia, 30, 1-12. doi:10.1016/j.actbio.2015.11.007 es_ES
dc.description.references Martino, M. M., Briquez, P. S., Maruyama, K., & Hubbell, J. A. (2015). Extracellular matrix-inspired growth factor delivery systems for bone regeneration. Advanced Drug Delivery Reviews, 94, 41-52. doi:10.1016/j.addr.2015.04.007 es_ES
dc.description.references Jha, A. K., Tharp, K. M., Browne, S., Ye, J., Stahl, A., Yeghiazarians, Y., & Healy, K. E. (2016). Matrix metalloproteinase-13 mediated degradation of hyaluronic acid-based matrices orchestrates stem cell engraftment through vascular integration. Biomaterials, 89, 136-147. doi:10.1016/j.biomaterials.2016.02.023 es_ES
dc.description.references Martino, M. M., Briquez, P. S., Ranga, A., Lutolf, M. P., & Hubbell, J. A. (2013). Heparin-binding domain of fibrin(ogen) binds growth factors and promotes tissue repair when incorporated within a synthetic matrix. Proceedings of the National Academy of Sciences, 110(12), 4563-4568. doi:10.1073/pnas.1221602110 es_ES
dc.description.references Altankov, G., Grinnell, F., & Groth, T. (1996). Studies on the biocompatibility of materials: Fibroblast reorganization of substratum-bound fibronectin on surfaces varying in wettability. Journal of Biomedical Materials Research, 30(3), 385-391. doi:10.1002/(sici)1097-4636(199603)30:3<385::aid-jbm13>3.0.co;2-j es_ES
dc.description.references Elosegui-Artola, A., Oria, R., Chen, Y., Kosmalska, A., Pérez-González, C., Castro, N., … Roca-Cusachs, P. (2016). Mechanical regulation of a molecular clutch defines force transmission and transduction in response to matrix rigidity. Nature Cell Biology, 18(5), 540-548. doi:10.1038/ncb3336 es_ES
dc.description.references Missirlis, D., & Spatz, J. P. (2013). Combined Effects of PEG Hydrogel Elasticity and Cell-Adhesive Coating on Fibroblast Adhesion and Persistent Migration. Biomacromolecules, 15(1), 195-205. doi:10.1021/bm4014827 es_ES
dc.description.references Baugh, L., & Vogel, V. (2004). Structural changes of fibronectin adsorbed to model surfaces probed by fluorescence resonance energy transfer. Journal of Biomedical Materials Research, 69A(3), 525-534. doi:10.1002/jbm.a.30026 es_ES
dc.description.references Faulón Marruecos, D., Kastantin, M., Schwartz, D. K., & Kaar, J. L. (2016). Dense Poly(ethylene glycol) Brushes Reduce Adsorption and Stabilize the Unfolded Conformation of Fibronectin. Biomacromolecules, 17(3), 1017-1025. doi:10.1021/acs.biomac.5b01657 es_ES
dc.description.references Keselowsky, B. G., Collard, D. M., & García, A. J. (2003). Surface chemistry modulates fibronectin conformation and directs integrin binding and specificity to control cell adhesion. Journal of Biomedical Materials Research Part A, 66A(2), 247-259. doi:10.1002/jbm.a.10537 es_ES
dc.description.references Wang, R. N., Green, J., Wang, Z., Deng, Y., Qiao, M., Peabody, M., … Shi, L. L. (2014). Bone Morphogenetic Protein (BMP) signaling in development and human diseases. Genes & Diseases, 1(1), 87-105. doi:10.1016/j.gendis.2014.07.005 es_ES
dc.description.references Martino, M. M., Tortelli, F., Mochizuki, M., Traub, S., Ben-David, D., Kuhn, G. A., … Hubbell, J. A. (2011). Engineering the Growth Factor Microenvironment with Fibronectin Domains to Promote Wound and Bone Tissue Healing. Science Translational Medicine, 3(100). doi:10.1126/scitranslmed.3002614 es_ES
dc.description.references Wijelath, E. S., Rahman, S., Namekata, M., Murray, J., Nishimura, T., Mostafavi-Pour, Z., … Sobel, M. (2006). Heparin-II Domain of Fibronectin Is a Vascular Endothelial Growth Factor-Binding Domain. Circulation Research, 99(8), 853-860. doi:10.1161/01.res.0000246849.17887.66 es_ES
dc.description.references Wijelath, E. S., Rahman, S., Murray, J., Patel, Y., Savidge, G., & Sobel, M. (2004). Fibronectin promotes VEGF-induced CD34+ cell differentiation into endothelial cells. Journal of Vascular Surgery, 39(3), 655-660. doi:10.1016/j.jvs.2003.10.042 es_ES
dc.description.references Wijelath, E. S., Murray, J., Rahman, S., Patel, Y., Ishida, A., Strand, K., … Sobel, M. (2002). Novel Vascular Endothelial Growth Factor Binding Domains of Fibronectin Enhance Vascular Endothelial Growth Factor Biological Activity. Circulation Research, 91(1), 25-31. doi:10.1161/01.res.0000026420.22406.79 es_ES
dc.description.references Crouzier, T., Ren, K., Nicolas, C., Roy, C., & Picart, C. (2009). Layer-By-Layer Films as a Biomimetic Reservoir for rhBMP-2 Delivery: Controlled Differentiation of Myoblasts to Osteoblasts. Small, 5(5), 598-608. doi:10.1002/smll.200800804 es_ES
dc.description.references Phelps, E. A., Landázuri, N., Thulé, P. M., Taylor, W. R., & García, A. J. (2009). Bioartificial matrices for therapeutic vascularization. Proceedings of the National Academy of Sciences, 107(8), 3323-3328. doi:10.1073/pnas.0905447107 es_ES
dc.description.references Foster, G. A., Headen, D. M., González-García, C., Salmerón-Sánchez, M., Shirwan, H., & García, A. J. (2017). Protease-degradable microgels for protein delivery for vascularization. Biomaterials, 113, 170-175. doi:10.1016/j.biomaterials.2016.10.044 es_ES
dc.description.references García, J. R., & García, A. J. (2015). Biomaterial-mediated strategies targeting vascularization for bone repair. Drug Delivery and Translational Research, 6(2), 77-95. doi:10.1007/s13346-015-0236-0 es_ES
dc.description.references Salmerón-Sánchez, M., & Dalby, M. J. (2016). Synergistic growth factor microenvironments. Chemical Communications, 52(91), 13327-13336. doi:10.1039/c6cc06888j es_ES
dc.description.references Mao, Y., & Schwarzbauer, J. E. (2005). Fibronectin fibrillogenesis, a cell-mediated matrix assembly process. Matrix Biology, 24(6), 389-399. doi:10.1016/j.matbio.2005.06.008 es_ES
dc.description.references Singh, P., Carraher, C., & Schwarzbauer, J. E. (2010). Assembly of Fibronectin Extracellular Matrix. Annual Review of Cell and Developmental Biology, 26(1), 397-419. doi:10.1146/annurev-cellbio-100109-104020 es_ES
dc.description.references Llopis-Hernández, V., Cantini, M., González-García, C., & Salmerón-Sánchez, M. (2014). Material-based strategies to engineer fibronectin matrices for regenerative medicine. International Materials Reviews, 60(5), 245-264. doi:10.1179/1743280414y.0000000049 es_ES
dc.description.references Moulisová, V., Gonzalez-García, C., Cantini, M., Rodrigo-Navarro, A., Weaver, J., Costell, M., … Salmerón-Sánchez, M. (2017). Engineered microenvironments for synergistic VEGF – Integrin signalling during vascularization. Biomaterials, 126, 61-74. doi:10.1016/j.biomaterials.2017.02.024 es_ES
dc.description.references Ben-David, D., Srouji, S., Shapira-Schweitzer, K., Kossover, O., Ivanir, E., Kuhn, G., … Livne, E. (2013). Low dose BMP-2 treatment for bone repair using a PEGylated fibrinogen hydrogel matrix. Biomaterials, 34(12), 2902-2910. doi:10.1016/j.biomaterials.2013.01.035 es_ES
dc.description.references Woods, A., Longley, R. L., Tumova, S., & Couchman, J. R. (2000). Syndecan-4 Binding to the High Affinity Heparin-Binding Domain of Fibronectin Drives Focal Adhesion Formation in Fibroblasts. Archives of Biochemistry and Biophysics, 374(1), 66-72. doi:10.1006/abbi.1999.1607 es_ES
dc.description.references Guan, J.-L., & Hynes, R. O. (1990). Lymphoid cells recognize an alternatively spliced segment of fibronectin via the integrin receptor α4β1. Cell, 60(1), 53-61. doi:10.1016/0092-8674(90)90715-q es_ES
dc.description.references Wayner, E. A., Garcia-Pardo, A., Humphries, M. J., McDonald, J. A., & Carter, W. G. (1989). Identification and characterization of the T lymphocyte adhesion receptor for an alternative cell attachment domain (CS-1) in plasma fibronectin. Journal of Cell Biology, 109(3), 1321-1330. doi:10.1083/jcb.109.3.1321 es_ES
dc.description.references Hielscher, A., Ellis, K., Qiu, C., Porterfield, J., & Gerecht, S. (2016). Fibronectin Deposition Participates in Extracellular Matrix Assembly and Vascular Morphogenesis. PLOS ONE, 11(1), e0147600. doi:10.1371/journal.pone.0147600 es_ES
dc.description.references Zhou, X., Rowe, R. G., Hiraoka, N., George, J. P., Wirtz, D., Mosher, D. F., … Weiss, S. J. (2008). Fibronectin fibrillogenesis regulates three-dimensional neovessel formation. Genes & Development, 22(9), 1231-1243. doi:10.1101/gad.1643308 es_ES
dc.description.references Pankov, R., & Yamada, K. M. (2002). Fibronectin at a glance. Journal of Cell Science, 115(20), 3861-3863. doi:10.1242/jcs.00059 es_ES
dc.description.references Magnusson, M. K., & Mosher, D. F. (1998). Fibronectin. Arteriosclerosis, Thrombosis, and Vascular Biology, 18(9), 1363-1370. doi:10.1161/01.atv.18.9.1363 es_ES
dc.description.references Leiss, M., Beckmann, K., Girós, A., Costell, M., & Fässler, R. (2008). The role of integrin binding sites in fibronectin matrix assembly in vivo. Current Opinion in Cell Biology, 20(5), 502-507. doi:10.1016/j.ceb.2008.06.001 es_ES
dc.description.references Cahill, K. S. (2009). Prevalence, Complications, and Hospital Charges Associated With Use of Bone-Morphogenetic Proteins in Spinal Fusion Procedures. JAMA, 302(1), 58. doi:10.1001/jama.2009.956 es_ES
dc.description.references James, A. W., LaChaud, G., Shen, J., Asatrian, G., Nguyen, V., Zhang, X., … Soo, C. (2016). A Review of the Clinical Side Effects of Bone Morphogenetic Protein-2. Tissue Engineering Part B: Reviews, 22(4), 284-297. doi:10.1089/ten.teb.2015.0357 es_ES
dc.description.references Kyburz, K. A., & Anseth, K. S. (2015). Synthetic Mimics of the Extracellular Matrix: How Simple is Complex Enough? Annals of Biomedical Engineering, 43(3), 489-500. doi:10.1007/s10439-015-1297-4 es_ES
dc.description.references Myeroff, C., & Archdeacon, M. (2011). Autogenous Bone Graft: Donor Sites and Techniques. Journal of Bone and Joint Surgery, 93(23), 2227-2236. doi:10.2106/jbjs.j.01513 es_ES
dc.description.references Dimitriou, R., Mataliotakis, G. I., Angoules, A. G., Kanakaris, N. K., & Giannoudis, P. V. (2011). Complications following autologous bone graft harvesting from the iliac crest and using the RIA: A systematic review. Injury, 42, S3-S15. doi:10.1016/j.injury.2011.06.015 es_ES
dc.description.references Curry, A. S., Pensa, N. W., Barlow, A. M., & Bellis, S. L. (2016). Taking cues from the extracellular matrix to design bone-mimetic regenerative scaffolds. Matrix Biology, 52-54, 397-412. doi:10.1016/j.matbio.2016.02.011 es_ES
dc.description.references Wang, L., Fan, H., Zhang, Z.-Y., Lou, A.-J., Pei, G.-X., Jiang, S., … Jin, D. (2010). Osteogenesis and angiogenesis of tissue-engineered bone constructed by prevascularized β-tricalcium phosphate scaffold and mesenchymal stem cells. Biomaterials, 31(36), 9452-9461. doi:10.1016/j.biomaterials.2010.08.036 es_ES
dc.description.references Almany, L., & Seliktar, D. (2005). Biosynthetic hydrogel scaffolds made from fibrinogen and polyethylene glycol for 3D cell cultures. Biomaterials, 26(15), 2467-2477. doi:10.1016/j.biomaterials.2004.06.047 es_ES
dc.description.references Nakatsu, M. N., Sainson, R. C. A., Aoto, J. N., Taylor, K. L., Aitkenhead, M., Pérez-del-Pulgar, S., … Hughes, C. C. W. (2003). Angiogenic sprouting and capillary lumen formation modeled by human umbilical vein endothelial cells (HUVEC) in fibrin gels: the role of fibroblasts and Angiopoietin-1☆. Microvascular Research, 66(2), 102-112. doi:10.1016/s0026-2862(03)00045-1 es_ES
dc.description.references Li, S., Nih, L. R., Bachman, H., Fei, P., Li, Y., Nam, E., … Segura, T. (2017). Hydrogels with precisely controlled integrin activation dictate vascular patterning and permeability. Nature Materials, 16(9), 953-961. doi:10.1038/nmat4954 es_ES
dc.description.references Phelps, E. A., Enemchukwu, N. O., Fiore, V. F., Sy, J. C., Murthy, N., Sulchek, T. A., … García, A. J. (2011). Maleimide Cross-Linked Bioactive PEG Hydrogel Exhibits Improved Reaction Kinetics and Cross-Linking for Cell Encapsulation and In Situ Delivery. Advanced Materials, 24(1), 64-70. doi:10.1002/adma.201103574 es_ES
dc.description.references Phelps, E. A., Templeman, K. L., Thulé, P. M., & García, A. J. (2013). Engineered VEGF-releasing PEG–MAL hydrogel for pancreatic islet vascularization. Drug Delivery and Translational Research, 5(2), 125-136. doi:10.1007/s13346-013-0142-2 es_ES
dc.description.references Zhang, C., Ramanathan, A., & Karuri, N. W. (2014). Proteolytically stabilizing fibronectin without compromising cell and gelatin binding activity. Biotechnology Progress, 31(1), 277-288. doi:10.1002/btpr.2018 es_ES
dc.description.references Zhang, C., Desai, R., Perez-Luna, V., & Karuri, N. (2014). PEGylation of lysine residues improves the proteolytic stability of fibronectin while retaining biological activity. Biotechnology Journal, 9(8), 1033-1043. doi:10.1002/biot.201400115 es_ES
dc.description.references Francisco, A. T., Hwang, P. Y., Jeong, C. G., Jing, L., Chen, J., & Setton, L. A. (2014). Photocrosslinkable laminin-functionalized polyethylene glycol hydrogel for intervertebral disc regeneration. Acta Biomaterialia, 10(3), 1102-1111. doi:10.1016/j.actbio.2013.11.013 es_ES
dc.description.references Seidlits, S. K., Drinnan, C. T., Petersen, R. R., Shear, J. B., Suggs, L. J., & Schmidt, C. E. (2011). Fibronectin–hyaluronic acid composite hydrogels for three-dimensional endothelial cell culture. Acta Biomaterialia, 7(6), 2401-2409. doi:10.1016/j.actbio.2011.03.024 es_ES
dc.description.references Lutolf, M. P., & Hubbell, J. A. (2003). Synthesis and Physicochemical Characterization of End-Linked Poly(ethylene glycol)-co-peptide Hydrogels Formed by Michael-Type Addition. Biomacromolecules, 4(3), 713-722. doi:10.1021/bm025744e es_ES
dc.description.references Cambria, E., Renggli, K., Ahrens, C. C., Cook, C. D., Kroll, C., Krueger, A. T., … Griffith, L. G. (2015). Covalent Modification of Synthetic Hydrogels with Bioactive Proteins via Sortase-Mediated Ligation. Biomacromolecules, 16(8), 2316-2326. doi:10.1021/acs.biomac.5b00549 es_ES
dc.description.references Leslie-Barbick, J. E., Moon, J. J., & West, J. L. (2009). Covalently-Immobilized Vascular Endothelial Growth Factor Promotes Endothelial Cell Tubulogenesis in Poly(ethylene glycol) Diacrylate Hydrogels. Journal of Biomaterials Science, Polymer Edition, 20(12), 1763-1779. doi:10.1163/156856208x386381 es_ES
dc.description.references Ferrara, N., Gerber, H.-P., & LeCouter, J. (2003). The biology of VEGF and its receptors. Nature Medicine, 9(6), 669-676. doi:10.1038/nm0603-669 es_ES
dc.description.references Phelps, E. A., & García, A. J. (2010). Engineering more than a cell: vascularization strategies in tissue engineering. Current Opinion in Biotechnology, 21(5), 704-709. doi:10.1016/j.copbio.2010.06.005 es_ES
dc.description.references Ferrara, N., & Kerbel, R. S. (2005). Angiogenesis as a therapeutic target. Nature, 438(7070), 967-974. doi:10.1038/nature04483 es_ES
dc.description.references Semenza, G. L. (2007). Vasculogenesis, angiogenesis, and arteriogenesis: Mechanisms of blood vessel formation and remodeling. Journal of Cellular Biochemistry, 102(4), 840-847. doi:10.1002/jcb.21523 es_ES
dc.description.references Ribatti, D. (2016). The chick embryo chorioallantoic membrane (CAM). A multifaceted experimental model. Mechanisms of Development, 141, 70-77. doi:10.1016/j.mod.2016.05.003 es_ES
dc.description.references Shekaran, A., García, J. R., Clark, A. Y., Kavanaugh, T. E., Lin, A. S., Guldberg, R. E., & García, A. J. (2014). Bone regeneration using an alpha 2 beta 1 integrin-specific hydrogel as a BMP-2 delivery vehicle. Biomaterials, 35(21), 5453-5461. doi:10.1016/j.biomaterials.2014.03.055 es_ES
dc.description.references Cruz-Acuña, R., Quirós, M., Farkas, A. E., Dedhia, P. H., Huang, S., Siuda, D., … García, A. J. (2017). Synthetic hydrogels for human intestinal organoid generation and colonic wound repair. Nature Cell Biology, 19(11), 1326-1335. doi:10.1038/ncb3632 es_ES
dc.description.references Cruz-Acuña, R., Quirós, M., Huang, S., Siuda, D., Spence, J. R., Nusrat, A., & García, A. J. (2018). PEG-4MAL hydrogels for human organoid generation, culture, and in vivo delivery. Nature Protocols, 13(9), 2102-2119. doi:10.1038/s41596-018-0036-3 es_ES
dc.description.references Baker, A. E. G., Bahlmann, L. C., Tam, R. Y., Liu, J. C., Ganesh, A. N., Mitrousis, N., … Shoichet, M. S. (2019). Benchmarking to the Gold Standard: Hyaluronan‐Oxime Hydrogels Recapitulate Xenograft Models with In Vitro Breast Cancer Spheroid Culture. Advanced Materials, 31(36), 1901166. doi:10.1002/adma.201901166 es_ES
dc.description.references Zhang, C., Hekmatfar, S., Ramanathan, A., & Karuri, N. W. (2013). PEGylated human plasma fibronectin is proteolytically stable, supports cell adhesion, cell migration, focal adhesion assembly, and fibronectin fibrillogenesis. Biotechnology Progress, 29(2), 493-504. doi:10.1002/btpr.1689 es_ES
dc.description.references Zhang, C., Hekmatfer, S., & Karuri, N. W. (2013). A comparative study of polyethylene glycol hydrogels derivatized with the RGD peptide and the cell-binding domain of fibronectin. Journal of Biomedical Materials Research Part A, 102(1), 170-179. doi:10.1002/jbm.a.34687 es_ES
dc.description.references Patel, S., Chaffotte, A. F., Goubard, F., & Pauthe, E. (2004). Urea-Induced Sequential Unfolding of Fibronectin:  A Fluorescence Spectroscopy and Circular Dichroism Study. Biochemistry, 43(6), 1724-1735. doi:10.1021/bi0347104 es_ES
dc.description.references Patel, S., Chaffotte, A. F., Amana, B., Goubard, F., & Pauthe, E. (2006). In vitro denaturation–renaturation of fibronectin. Formation of multimers disulfide-linked and shuffling of intramolecular disulfide bonds. The International Journal of Biochemistry & Cell Biology, 38(9), 1547-1560. doi:10.1016/j.biocel.2006.03.005 es_ES
dc.description.references Schwarzbauer, J. E. (1991). Identification of the fibronectin sequences required for assembly of a fibrillar matrix. Journal of Cell Biology, 113(6), 1463-1473. doi:10.1083/jcb.113.6.1463 es_ES
dc.description.references Mitsi, M., Hong, Z., Costello, C. E., & Nugent, M. A. (2006). Heparin-Mediated Conformational Changes in Fibronectin Expose Vascular Endothelial Growth Factor Binding Sites. Biochemistry, 45(34), 10319-10328. doi:10.1021/bi060974p es_ES
dc.description.references Zwingenberger, S., Langanke, R., Vater, C., Lee, G., Niederlohmann, E., Sensenschmidt, M., … Stiehler, M. (2016). The effect of SDF-1α on low dose BMP-2 mediated bone regeneration by release from heparinized mineralized collagen type I matrix scaffolds in a murine critical size bone defect model. Journal of Biomedical Materials Research Part A, 104(9), 2126-2134. doi:10.1002/jbm.a.35744 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem