Mostrar el registro sencillo del ítem
dc.contributor.author | Trujillo-Muñoz, Sara | es_ES |
dc.contributor.author | González-García, Cristina | es_ES |
dc.contributor.author | Rico Tortosa, Patricia María | es_ES |
dc.contributor.author | Reid, Andrew | es_ES |
dc.contributor.author | Windmill, James | es_ES |
dc.contributor.author | Dalby, Matthew J. | es_ES |
dc.contributor.author | Salmerón Sánchez, Manuel | es_ES |
dc.date.accessioned | 2021-05-05T03:31:50Z | |
dc.date.available | 2021-05-05T03:31:50Z | |
dc.date.issued | 2020-09 | es_ES |
dc.identifier.issn | 0142-9612 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/165955 | |
dc.description.abstract | [EN] Extracellular matrix (ECM)-derived matrices such as Matrigel are used to culture numerous cell types in vitro as they recapitulate ECM properties that support cell growth, organisation, migration and differentiation. These ECM-derived matrices contain various growth factors which make them highly bioactive. However, they suffer lot-to-lot variability, undefined composition and lack of controlled physical properties. There is a need to develop rationally designed biomaterials that can also recapitulate ECM roles. Here, we report the development of fibronectin (FN)-based 3D hydrogels of controlled stiffness and degradability that incorporate full-length FN to enable solid-phase presentation of growth factors in a physiological manner. We demonstrate, in vitro and in vivo, the effect of incorporating vascular endothelial growth factor (VEGF) and bone morphogenetic protein 2 (BMP2) in these hydrogels to enhance angiogenesis and bone regeneration, respectively. These hydrogels represent a step-change in the design of well-defined, reproducible, synthetic microenvironments for 3D cell culture that incorporate growth factors to achieve functional effects. | es_ES |
dc.description.sponsorship | This study was supported by the UK Regenerative Medicine Platform (MRC grant MR/L022710/1), the UK Engineering and Physical Sciences Research Council (EPSRC EP/P001114/1) and a programme grant from the Sir Bobby Charlton Foundation. mu CT work was supported by the European Research Council (ERC) under the European Union's Seventh Framework Programme (FP7/2007-2013) (grant agreement No. [615030]). S.T. acknowledges support from the University of Glasgow through their internal scholarship funding program. We thank the support of David Adams (Anatomy lab, University of Glasgow) and the Biological Services and Veterinary Research Facility (University of Glasagow) for their assistance. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Elsevier | es_ES |
dc.relation.ispartof | Biomaterials | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Hydrogels | es_ES |
dc.subject | Growth factors | es_ES |
dc.subject | Fibronectin | es_ES |
dc.subject | Poly(ethylene) glycol | es_ES |
dc.subject | Bone | es_ES |
dc.subject | Vascularisation | es_ES |
dc.subject.classification | FISICA APLICADA | es_ES |
dc.title | Engineered 3D hydrogels with full-length fibronectin that sequester and present growth factors | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1016/j.biomaterials.2020.120104 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/FP7/615030/EU/Soft and Small: Acoustic Transducers Inspired by Nature/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/UKRI//EP%2FP001114%2F1/GB/Engineering growth factor microenvironments - a new therapeutic paradigm for regenerative medicine/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/UKRI//MR%2FL022710%2F1/GB/Synergistic microenvironments for non-union bone defects/ | |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Centro de Biomateriales e Ingeniería Tisular - Centre de Biomaterials i Enginyeria Tissular | es_ES |
dc.description.bibliographicCitation | Trujillo-Muñoz, S.; González-García, C.; Rico Tortosa, PM.; Reid, A.; Windmill, J.; Dalby, MJ.; Salmerón Sánchez, M. (2020). Engineered 3D hydrogels with full-length fibronectin that sequester and present growth factors. Biomaterials. 252:1-15. https://doi.org/10.1016/j.biomaterials.2020.120104 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1016/j.biomaterials.2020.120104 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 15 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 252 | es_ES |
dc.identifier.pmid | 32422492 | es_ES |
dc.relation.pasarela | S\434898 | es_ES |
dc.contributor.funder | European Commission | es_ES |
dc.contributor.funder | UK Research and Innovation | es_ES |
dc.contributor.funder | University of Glasgow | es_ES |
dc.contributor.funder | Sir Bobby Charlton Foundation | es_ES |
dc.contributor.funder | UK Regenerative Medicine Platform | es_ES |
dc.contributor.funder | Engineering and Physical Sciences Research Council, Reino Unido | es_ES |
dc.description.references | Jarad, M., Kuczynski, E. A., Morrison, J., Viloria-Petit, A. M., & Coomber, B. L. (2017). Release of endothelial cell associated VEGFR2 during TGF-β modulated angiogenesis in vitro. BMC Cell Biology, 18(1). doi:10.1186/s12860-017-0127-y | es_ES |
dc.description.references | Spence, J. R., Mayhew, C. N., Rankin, S. A., Kuhar, M. F., Vallance, J. E., Tolle, K., … Wells, J. M. (2010). Directed differentiation of human pluripotent stem cells into intestinal tissue in vitro. Nature, 470(7332), 105-109. doi:10.1038/nature09691 | es_ES |
dc.description.references | Yang, S.-J., Son, J. K., Hong, S. J., Lee, N.-E., Shin, D. Y., Park, S. H., … Kim, S. J. (2018). Ectopic vascularized bone formation by human umbilical cord-derived mesenchymal stromal cells expressing bone morphogenetic factor-2 and endothelial cells. Biochemical and Biophysical Research Communications, 504(1), 302-308. doi:10.1016/j.bbrc.2018.08.179 | es_ES |
dc.description.references | Hughes, C. S., Postovit, L. M., & Lajoie, G. A. (2010). Matrigel: A complex protein mixture required for optimal growth of cell culture. PROTEOMICS, 10(9), 1886-1890. doi:10.1002/pmic.200900758 | es_ES |
dc.description.references | Dalby, M. J., García, A. J., & Salmeron-Sanchez, M. (2018). Receptor control in mesenchymal stem cell engineering. Nature Reviews Materials, 3(3). doi:10.1038/natrevmats.2017.91 | es_ES |
dc.description.references | Martino, M. M., Brkic, S., Bovo, E., Burger, M., Schaefer, D. J., Wolff, T., … Banfi, A. (2015). Extracellular Matrix and Growth Factor Engineering for Controlled Angiogenesis in Regenerative Medicine. Frontiers in Bioengineering and Biotechnology, 3. doi:10.3389/fbioe.2015.00045 | es_ES |
dc.description.references | Mitchell, A. C., Briquez, P. S., Hubbell, J. A., & Cochran, J. R. (2016). Engineering growth factors for regenerative medicine applications. Acta Biomaterialia, 30, 1-12. doi:10.1016/j.actbio.2015.11.007 | es_ES |
dc.description.references | Martino, M. M., Briquez, P. S., Maruyama, K., & Hubbell, J. A. (2015). Extracellular matrix-inspired growth factor delivery systems for bone regeneration. Advanced Drug Delivery Reviews, 94, 41-52. doi:10.1016/j.addr.2015.04.007 | es_ES |
dc.description.references | Jha, A. K., Tharp, K. M., Browne, S., Ye, J., Stahl, A., Yeghiazarians, Y., & Healy, K. E. (2016). Matrix metalloproteinase-13 mediated degradation of hyaluronic acid-based matrices orchestrates stem cell engraftment through vascular integration. Biomaterials, 89, 136-147. doi:10.1016/j.biomaterials.2016.02.023 | es_ES |
dc.description.references | Martino, M. M., Briquez, P. S., Ranga, A., Lutolf, M. P., & Hubbell, J. A. (2013). Heparin-binding domain of fibrin(ogen) binds growth factors and promotes tissue repair when incorporated within a synthetic matrix. Proceedings of the National Academy of Sciences, 110(12), 4563-4568. doi:10.1073/pnas.1221602110 | es_ES |
dc.description.references | Altankov, G., Grinnell, F., & Groth, T. (1996). Studies on the biocompatibility of materials: Fibroblast reorganization of substratum-bound fibronectin on surfaces varying in wettability. Journal of Biomedical Materials Research, 30(3), 385-391. doi:10.1002/(sici)1097-4636(199603)30:3<385::aid-jbm13>3.0.co;2-j | es_ES |
dc.description.references | Elosegui-Artola, A., Oria, R., Chen, Y., Kosmalska, A., Pérez-González, C., Castro, N., … Roca-Cusachs, P. (2016). Mechanical regulation of a molecular clutch defines force transmission and transduction in response to matrix rigidity. Nature Cell Biology, 18(5), 540-548. doi:10.1038/ncb3336 | es_ES |
dc.description.references | Missirlis, D., & Spatz, J. P. (2013). Combined Effects of PEG Hydrogel Elasticity and Cell-Adhesive Coating on Fibroblast Adhesion and Persistent Migration. Biomacromolecules, 15(1), 195-205. doi:10.1021/bm4014827 | es_ES |
dc.description.references | Baugh, L., & Vogel, V. (2004). Structural changes of fibronectin adsorbed to model surfaces probed by fluorescence resonance energy transfer. Journal of Biomedical Materials Research, 69A(3), 525-534. doi:10.1002/jbm.a.30026 | es_ES |
dc.description.references | Faulón Marruecos, D., Kastantin, M., Schwartz, D. K., & Kaar, J. L. (2016). Dense Poly(ethylene glycol) Brushes Reduce Adsorption and Stabilize the Unfolded Conformation of Fibronectin. Biomacromolecules, 17(3), 1017-1025. doi:10.1021/acs.biomac.5b01657 | es_ES |
dc.description.references | Keselowsky, B. G., Collard, D. M., & García, A. J. (2003). Surface chemistry modulates fibronectin conformation and directs integrin binding and specificity to control cell adhesion. Journal of Biomedical Materials Research Part A, 66A(2), 247-259. doi:10.1002/jbm.a.10537 | es_ES |
dc.description.references | Wang, R. N., Green, J., Wang, Z., Deng, Y., Qiao, M., Peabody, M., … Shi, L. L. (2014). Bone Morphogenetic Protein (BMP) signaling in development and human diseases. Genes & Diseases, 1(1), 87-105. doi:10.1016/j.gendis.2014.07.005 | es_ES |
dc.description.references | Martino, M. M., Tortelli, F., Mochizuki, M., Traub, S., Ben-David, D., Kuhn, G. A., … Hubbell, J. A. (2011). Engineering the Growth Factor Microenvironment with Fibronectin Domains to Promote Wound and Bone Tissue Healing. Science Translational Medicine, 3(100). doi:10.1126/scitranslmed.3002614 | es_ES |
dc.description.references | Wijelath, E. S., Rahman, S., Namekata, M., Murray, J., Nishimura, T., Mostafavi-Pour, Z., … Sobel, M. (2006). Heparin-II Domain of Fibronectin Is a Vascular Endothelial Growth Factor-Binding Domain. Circulation Research, 99(8), 853-860. doi:10.1161/01.res.0000246849.17887.66 | es_ES |
dc.description.references | Wijelath, E. S., Rahman, S., Murray, J., Patel, Y., Savidge, G., & Sobel, M. (2004). Fibronectin promotes VEGF-induced CD34+ cell differentiation into endothelial cells. Journal of Vascular Surgery, 39(3), 655-660. doi:10.1016/j.jvs.2003.10.042 | es_ES |
dc.description.references | Wijelath, E. S., Murray, J., Rahman, S., Patel, Y., Ishida, A., Strand, K., … Sobel, M. (2002). Novel Vascular Endothelial Growth Factor Binding Domains of Fibronectin Enhance Vascular Endothelial Growth Factor Biological Activity. Circulation Research, 91(1), 25-31. doi:10.1161/01.res.0000026420.22406.79 | es_ES |
dc.description.references | Crouzier, T., Ren, K., Nicolas, C., Roy, C., & Picart, C. (2009). Layer-By-Layer Films as a Biomimetic Reservoir for rhBMP-2 Delivery: Controlled Differentiation of Myoblasts to Osteoblasts. Small, 5(5), 598-608. doi:10.1002/smll.200800804 | es_ES |
dc.description.references | Phelps, E. A., Landázuri, N., Thulé, P. M., Taylor, W. R., & García, A. J. (2009). Bioartificial matrices for therapeutic vascularization. Proceedings of the National Academy of Sciences, 107(8), 3323-3328. doi:10.1073/pnas.0905447107 | es_ES |
dc.description.references | Foster, G. A., Headen, D. M., González-García, C., Salmerón-Sánchez, M., Shirwan, H., & García, A. J. (2017). Protease-degradable microgels for protein delivery for vascularization. Biomaterials, 113, 170-175. doi:10.1016/j.biomaterials.2016.10.044 | es_ES |
dc.description.references | García, J. R., & García, A. J. (2015). Biomaterial-mediated strategies targeting vascularization for bone repair. Drug Delivery and Translational Research, 6(2), 77-95. doi:10.1007/s13346-015-0236-0 | es_ES |
dc.description.references | Salmerón-Sánchez, M., & Dalby, M. J. (2016). Synergistic growth factor microenvironments. Chemical Communications, 52(91), 13327-13336. doi:10.1039/c6cc06888j | es_ES |
dc.description.references | Mao, Y., & Schwarzbauer, J. E. (2005). Fibronectin fibrillogenesis, a cell-mediated matrix assembly process. Matrix Biology, 24(6), 389-399. doi:10.1016/j.matbio.2005.06.008 | es_ES |
dc.description.references | Singh, P., Carraher, C., & Schwarzbauer, J. E. (2010). Assembly of Fibronectin Extracellular Matrix. Annual Review of Cell and Developmental Biology, 26(1), 397-419. doi:10.1146/annurev-cellbio-100109-104020 | es_ES |
dc.description.references | Llopis-Hernández, V., Cantini, M., González-García, C., & Salmerón-Sánchez, M. (2014). Material-based strategies to engineer fibronectin matrices for regenerative medicine. International Materials Reviews, 60(5), 245-264. doi:10.1179/1743280414y.0000000049 | es_ES |
dc.description.references | Moulisová, V., Gonzalez-García, C., Cantini, M., Rodrigo-Navarro, A., Weaver, J., Costell, M., … Salmerón-Sánchez, M. (2017). Engineered microenvironments for synergistic VEGF – Integrin signalling during vascularization. Biomaterials, 126, 61-74. doi:10.1016/j.biomaterials.2017.02.024 | es_ES |
dc.description.references | Ben-David, D., Srouji, S., Shapira-Schweitzer, K., Kossover, O., Ivanir, E., Kuhn, G., … Livne, E. (2013). Low dose BMP-2 treatment for bone repair using a PEGylated fibrinogen hydrogel matrix. Biomaterials, 34(12), 2902-2910. doi:10.1016/j.biomaterials.2013.01.035 | es_ES |
dc.description.references | Woods, A., Longley, R. L., Tumova, S., & Couchman, J. R. (2000). Syndecan-4 Binding to the High Affinity Heparin-Binding Domain of Fibronectin Drives Focal Adhesion Formation in Fibroblasts. Archives of Biochemistry and Biophysics, 374(1), 66-72. doi:10.1006/abbi.1999.1607 | es_ES |
dc.description.references | Guan, J.-L., & Hynes, R. O. (1990). Lymphoid cells recognize an alternatively spliced segment of fibronectin via the integrin receptor α4β1. Cell, 60(1), 53-61. doi:10.1016/0092-8674(90)90715-q | es_ES |
dc.description.references | Wayner, E. A., Garcia-Pardo, A., Humphries, M. J., McDonald, J. A., & Carter, W. G. (1989). Identification and characterization of the T lymphocyte adhesion receptor for an alternative cell attachment domain (CS-1) in plasma fibronectin. Journal of Cell Biology, 109(3), 1321-1330. doi:10.1083/jcb.109.3.1321 | es_ES |
dc.description.references | Hielscher, A., Ellis, K., Qiu, C., Porterfield, J., & Gerecht, S. (2016). Fibronectin Deposition Participates in Extracellular Matrix Assembly and Vascular Morphogenesis. PLOS ONE, 11(1), e0147600. doi:10.1371/journal.pone.0147600 | es_ES |
dc.description.references | Zhou, X., Rowe, R. G., Hiraoka, N., George, J. P., Wirtz, D., Mosher, D. F., … Weiss, S. J. (2008). Fibronectin fibrillogenesis regulates three-dimensional neovessel formation. Genes & Development, 22(9), 1231-1243. doi:10.1101/gad.1643308 | es_ES |
dc.description.references | Pankov, R., & Yamada, K. M. (2002). Fibronectin at a glance. Journal of Cell Science, 115(20), 3861-3863. doi:10.1242/jcs.00059 | es_ES |
dc.description.references | Magnusson, M. K., & Mosher, D. F. (1998). Fibronectin. Arteriosclerosis, Thrombosis, and Vascular Biology, 18(9), 1363-1370. doi:10.1161/01.atv.18.9.1363 | es_ES |
dc.description.references | Leiss, M., Beckmann, K., Girós, A., Costell, M., & Fässler, R. (2008). The role of integrin binding sites in fibronectin matrix assembly in vivo. Current Opinion in Cell Biology, 20(5), 502-507. doi:10.1016/j.ceb.2008.06.001 | es_ES |
dc.description.references | Cahill, K. S. (2009). Prevalence, Complications, and Hospital Charges Associated With Use of Bone-Morphogenetic Proteins in Spinal Fusion Procedures. JAMA, 302(1), 58. doi:10.1001/jama.2009.956 | es_ES |
dc.description.references | James, A. W., LaChaud, G., Shen, J., Asatrian, G., Nguyen, V., Zhang, X., … Soo, C. (2016). A Review of the Clinical Side Effects of Bone Morphogenetic Protein-2. Tissue Engineering Part B: Reviews, 22(4), 284-297. doi:10.1089/ten.teb.2015.0357 | es_ES |
dc.description.references | Kyburz, K. A., & Anseth, K. S. (2015). Synthetic Mimics of the Extracellular Matrix: How Simple is Complex Enough? Annals of Biomedical Engineering, 43(3), 489-500. doi:10.1007/s10439-015-1297-4 | es_ES |
dc.description.references | Myeroff, C., & Archdeacon, M. (2011). Autogenous Bone Graft: Donor Sites and Techniques. Journal of Bone and Joint Surgery, 93(23), 2227-2236. doi:10.2106/jbjs.j.01513 | es_ES |
dc.description.references | Dimitriou, R., Mataliotakis, G. I., Angoules, A. G., Kanakaris, N. K., & Giannoudis, P. V. (2011). Complications following autologous bone graft harvesting from the iliac crest and using the RIA: A systematic review. Injury, 42, S3-S15. doi:10.1016/j.injury.2011.06.015 | es_ES |
dc.description.references | Curry, A. S., Pensa, N. W., Barlow, A. M., & Bellis, S. L. (2016). Taking cues from the extracellular matrix to design bone-mimetic regenerative scaffolds. Matrix Biology, 52-54, 397-412. doi:10.1016/j.matbio.2016.02.011 | es_ES |
dc.description.references | Wang, L., Fan, H., Zhang, Z.-Y., Lou, A.-J., Pei, G.-X., Jiang, S., … Jin, D. (2010). Osteogenesis and angiogenesis of tissue-engineered bone constructed by prevascularized β-tricalcium phosphate scaffold and mesenchymal stem cells. Biomaterials, 31(36), 9452-9461. doi:10.1016/j.biomaterials.2010.08.036 | es_ES |
dc.description.references | Almany, L., & Seliktar, D. (2005). Biosynthetic hydrogel scaffolds made from fibrinogen and polyethylene glycol for 3D cell cultures. Biomaterials, 26(15), 2467-2477. doi:10.1016/j.biomaterials.2004.06.047 | es_ES |
dc.description.references | Nakatsu, M. N., Sainson, R. C. A., Aoto, J. N., Taylor, K. L., Aitkenhead, M., Pérez-del-Pulgar, S., … Hughes, C. C. W. (2003). Angiogenic sprouting and capillary lumen formation modeled by human umbilical vein endothelial cells (HUVEC) in fibrin gels: the role of fibroblasts and Angiopoietin-1☆. Microvascular Research, 66(2), 102-112. doi:10.1016/s0026-2862(03)00045-1 | es_ES |
dc.description.references | Li, S., Nih, L. R., Bachman, H., Fei, P., Li, Y., Nam, E., … Segura, T. (2017). Hydrogels with precisely controlled integrin activation dictate vascular patterning and permeability. Nature Materials, 16(9), 953-961. doi:10.1038/nmat4954 | es_ES |
dc.description.references | Phelps, E. A., Enemchukwu, N. O., Fiore, V. F., Sy, J. C., Murthy, N., Sulchek, T. A., … García, A. J. (2011). Maleimide Cross-Linked Bioactive PEG Hydrogel Exhibits Improved Reaction Kinetics and Cross-Linking for Cell Encapsulation and In Situ Delivery. Advanced Materials, 24(1), 64-70. doi:10.1002/adma.201103574 | es_ES |
dc.description.references | Phelps, E. A., Templeman, K. L., Thulé, P. M., & García, A. J. (2013). Engineered VEGF-releasing PEG–MAL hydrogel for pancreatic islet vascularization. Drug Delivery and Translational Research, 5(2), 125-136. doi:10.1007/s13346-013-0142-2 | es_ES |
dc.description.references | Zhang, C., Ramanathan, A., & Karuri, N. W. (2014). Proteolytically stabilizing fibronectin without compromising cell and gelatin binding activity. Biotechnology Progress, 31(1), 277-288. doi:10.1002/btpr.2018 | es_ES |
dc.description.references | Zhang, C., Desai, R., Perez-Luna, V., & Karuri, N. (2014). PEGylation of lysine residues improves the proteolytic stability of fibronectin while retaining biological activity. Biotechnology Journal, 9(8), 1033-1043. doi:10.1002/biot.201400115 | es_ES |
dc.description.references | Francisco, A. T., Hwang, P. Y., Jeong, C. G., Jing, L., Chen, J., & Setton, L. A. (2014). Photocrosslinkable laminin-functionalized polyethylene glycol hydrogel for intervertebral disc regeneration. Acta Biomaterialia, 10(3), 1102-1111. doi:10.1016/j.actbio.2013.11.013 | es_ES |
dc.description.references | Seidlits, S. K., Drinnan, C. T., Petersen, R. R., Shear, J. B., Suggs, L. J., & Schmidt, C. E. (2011). Fibronectin–hyaluronic acid composite hydrogels for three-dimensional endothelial cell culture. Acta Biomaterialia, 7(6), 2401-2409. doi:10.1016/j.actbio.2011.03.024 | es_ES |
dc.description.references | Lutolf, M. P., & Hubbell, J. A. (2003). Synthesis and Physicochemical Characterization of End-Linked Poly(ethylene glycol)-co-peptide Hydrogels Formed by Michael-Type Addition. Biomacromolecules, 4(3), 713-722. doi:10.1021/bm025744e | es_ES |
dc.description.references | Cambria, E., Renggli, K., Ahrens, C. C., Cook, C. D., Kroll, C., Krueger, A. T., … Griffith, L. G. (2015). Covalent Modification of Synthetic Hydrogels with Bioactive Proteins via Sortase-Mediated Ligation. Biomacromolecules, 16(8), 2316-2326. doi:10.1021/acs.biomac.5b00549 | es_ES |
dc.description.references | Leslie-Barbick, J. E., Moon, J. J., & West, J. L. (2009). Covalently-Immobilized Vascular Endothelial Growth Factor Promotes Endothelial Cell Tubulogenesis in Poly(ethylene glycol) Diacrylate Hydrogels. Journal of Biomaterials Science, Polymer Edition, 20(12), 1763-1779. doi:10.1163/156856208x386381 | es_ES |
dc.description.references | Ferrara, N., Gerber, H.-P., & LeCouter, J. (2003). The biology of VEGF and its receptors. Nature Medicine, 9(6), 669-676. doi:10.1038/nm0603-669 | es_ES |
dc.description.references | Phelps, E. A., & García, A. J. (2010). Engineering more than a cell: vascularization strategies in tissue engineering. Current Opinion in Biotechnology, 21(5), 704-709. doi:10.1016/j.copbio.2010.06.005 | es_ES |
dc.description.references | Ferrara, N., & Kerbel, R. S. (2005). Angiogenesis as a therapeutic target. Nature, 438(7070), 967-974. doi:10.1038/nature04483 | es_ES |
dc.description.references | Semenza, G. L. (2007). Vasculogenesis, angiogenesis, and arteriogenesis: Mechanisms of blood vessel formation and remodeling. Journal of Cellular Biochemistry, 102(4), 840-847. doi:10.1002/jcb.21523 | es_ES |
dc.description.references | Ribatti, D. (2016). The chick embryo chorioallantoic membrane (CAM). A multifaceted experimental model. Mechanisms of Development, 141, 70-77. doi:10.1016/j.mod.2016.05.003 | es_ES |
dc.description.references | Shekaran, A., García, J. R., Clark, A. Y., Kavanaugh, T. E., Lin, A. S., Guldberg, R. E., & García, A. J. (2014). Bone regeneration using an alpha 2 beta 1 integrin-specific hydrogel as a BMP-2 delivery vehicle. Biomaterials, 35(21), 5453-5461. doi:10.1016/j.biomaterials.2014.03.055 | es_ES |
dc.description.references | Cruz-Acuña, R., Quirós, M., Farkas, A. E., Dedhia, P. H., Huang, S., Siuda, D., … García, A. J. (2017). Synthetic hydrogels for human intestinal organoid generation and colonic wound repair. Nature Cell Biology, 19(11), 1326-1335. doi:10.1038/ncb3632 | es_ES |
dc.description.references | Cruz-Acuña, R., Quirós, M., Huang, S., Siuda, D., Spence, J. R., Nusrat, A., & García, A. J. (2018). PEG-4MAL hydrogels for human organoid generation, culture, and in vivo delivery. Nature Protocols, 13(9), 2102-2119. doi:10.1038/s41596-018-0036-3 | es_ES |
dc.description.references | Baker, A. E. G., Bahlmann, L. C., Tam, R. Y., Liu, J. C., Ganesh, A. N., Mitrousis, N., … Shoichet, M. S. (2019). Benchmarking to the Gold Standard: Hyaluronan‐Oxime Hydrogels Recapitulate Xenograft Models with In Vitro Breast Cancer Spheroid Culture. Advanced Materials, 31(36), 1901166. doi:10.1002/adma.201901166 | es_ES |
dc.description.references | Zhang, C., Hekmatfar, S., Ramanathan, A., & Karuri, N. W. (2013). PEGylated human plasma fibronectin is proteolytically stable, supports cell adhesion, cell migration, focal adhesion assembly, and fibronectin fibrillogenesis. Biotechnology Progress, 29(2), 493-504. doi:10.1002/btpr.1689 | es_ES |
dc.description.references | Zhang, C., Hekmatfer, S., & Karuri, N. W. (2013). A comparative study of polyethylene glycol hydrogels derivatized with the RGD peptide and the cell-binding domain of fibronectin. Journal of Biomedical Materials Research Part A, 102(1), 170-179. doi:10.1002/jbm.a.34687 | es_ES |
dc.description.references | Patel, S., Chaffotte, A. F., Goubard, F., & Pauthe, E. (2004). Urea-Induced Sequential Unfolding of Fibronectin: A Fluorescence Spectroscopy and Circular Dichroism Study. Biochemistry, 43(6), 1724-1735. doi:10.1021/bi0347104 | es_ES |
dc.description.references | Patel, S., Chaffotte, A. F., Amana, B., Goubard, F., & Pauthe, E. (2006). In vitro denaturation–renaturation of fibronectin. Formation of multimers disulfide-linked and shuffling of intramolecular disulfide bonds. The International Journal of Biochemistry & Cell Biology, 38(9), 1547-1560. doi:10.1016/j.biocel.2006.03.005 | es_ES |
dc.description.references | Schwarzbauer, J. E. (1991). Identification of the fibronectin sequences required for assembly of a fibrillar matrix. Journal of Cell Biology, 113(6), 1463-1473. doi:10.1083/jcb.113.6.1463 | es_ES |
dc.description.references | Mitsi, M., Hong, Z., Costello, C. E., & Nugent, M. A. (2006). Heparin-Mediated Conformational Changes in Fibronectin Expose Vascular Endothelial Growth Factor Binding Sites. Biochemistry, 45(34), 10319-10328. doi:10.1021/bi060974p | es_ES |
dc.description.references | Zwingenberger, S., Langanke, R., Vater, C., Lee, G., Niederlohmann, E., Sensenschmidt, M., … Stiehler, M. (2016). The effect of SDF-1α on low dose BMP-2 mediated bone regeneration by release from heparinized mineralized collagen type I matrix scaffolds in a murine critical size bone defect model. Journal of Biomedical Materials Research Part A, 104(9), 2126-2134. doi:10.1002/jbm.a.35744 | es_ES |