- -

Engineered 3D hydrogels with full-length fibronectin that sequester and present growth factors

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Engineered 3D hydrogels with full-length fibronectin that sequester and present growth factors

Mostrar el registro completo del ítem

Trujillo-Muñoz, S.; González-García, C.; Rico Tortosa, PM.; Reid, A.; Windmill, J.; Dalby, MJ.; Salmerón Sánchez, M. (2020). Engineered 3D hydrogels with full-length fibronectin that sequester and present growth factors. Biomaterials. 252:1-15. https://doi.org/10.1016/j.biomaterials.2020.120104

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/165955

Ficheros en el ítem

Metadatos del ítem

Título: Engineered 3D hydrogels with full-length fibronectin that sequester and present growth factors
Autor: Trujillo-Muñoz, Sara González-García, Cristina Rico Tortosa, Patricia María Reid, Andrew Windmill, James Dalby, Matthew J. Salmerón Sánchez, Manuel
Entidad UPV: Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada
Universitat Politècnica de València. Centro de Biomateriales e Ingeniería Tisular - Centre de Biomaterials i Enginyeria Tissular
Fecha difusión:
Resumen:
[EN] Extracellular matrix (ECM)-derived matrices such as Matrigel are used to culture numerous cell types in vitro as they recapitulate ECM properties that support cell growth, organisation, migration and differentiation. ...[+]
Palabras clave: Hydrogels , Growth factors , Fibronectin , Poly(ethylene) glycol , Bone , Vascularisation
Derechos de uso: Reconocimiento (by)
Fuente:
Biomaterials. (issn: 0142-9612 )
DOI: 10.1016/j.biomaterials.2020.120104
Editorial:
Elsevier
Versión del editor: https://doi.org/10.1016/j.biomaterials.2020.120104
Código del Proyecto:
info:eu-repo/grantAgreement/EC/FP7/615030/EU/Soft and Small: Acoustic Transducers Inspired by Nature/
info:eu-repo/grantAgreement/UKRI//EP%2FP001114%2F1/GB/Engineering growth factor microenvironments - a new therapeutic paradigm for regenerative medicine/
info:eu-repo/grantAgreement/UKRI//MR%2FL022710%2F1/GB/Synergistic microenvironments for non-union bone defects/
Agradecimientos:
This study was supported by the UK Regenerative Medicine Platform (MRC grant MR/L022710/1), the UK Engineering and Physical Sciences Research Council (EPSRC EP/P001114/1) and a programme grant from the Sir Bobby Charlton ...[+]
Tipo: Artículo

References

Jarad, M., Kuczynski, E. A., Morrison, J., Viloria-Petit, A. M., & Coomber, B. L. (2017). Release of endothelial cell associated VEGFR2 during TGF-β modulated angiogenesis in vitro. BMC Cell Biology, 18(1). doi:10.1186/s12860-017-0127-y

Spence, J. R., Mayhew, C. N., Rankin, S. A., Kuhar, M. F., Vallance, J. E., Tolle, K., … Wells, J. M. (2010). Directed differentiation of human pluripotent stem cells into intestinal tissue in vitro. Nature, 470(7332), 105-109. doi:10.1038/nature09691

Yang, S.-J., Son, J. K., Hong, S. J., Lee, N.-E., Shin, D. Y., Park, S. H., … Kim, S. J. (2018). Ectopic vascularized bone formation by human umbilical cord-derived mesenchymal stromal cells expressing bone morphogenetic factor-2 and endothelial cells. Biochemical and Biophysical Research Communications, 504(1), 302-308. doi:10.1016/j.bbrc.2018.08.179 [+]
Jarad, M., Kuczynski, E. A., Morrison, J., Viloria-Petit, A. M., & Coomber, B. L. (2017). Release of endothelial cell associated VEGFR2 during TGF-β modulated angiogenesis in vitro. BMC Cell Biology, 18(1). doi:10.1186/s12860-017-0127-y

Spence, J. R., Mayhew, C. N., Rankin, S. A., Kuhar, M. F., Vallance, J. E., Tolle, K., … Wells, J. M. (2010). Directed differentiation of human pluripotent stem cells into intestinal tissue in vitro. Nature, 470(7332), 105-109. doi:10.1038/nature09691

Yang, S.-J., Son, J. K., Hong, S. J., Lee, N.-E., Shin, D. Y., Park, S. H., … Kim, S. J. (2018). Ectopic vascularized bone formation by human umbilical cord-derived mesenchymal stromal cells expressing bone morphogenetic factor-2 and endothelial cells. Biochemical and Biophysical Research Communications, 504(1), 302-308. doi:10.1016/j.bbrc.2018.08.179

Hughes, C. S., Postovit, L. M., & Lajoie, G. A. (2010). Matrigel: A complex protein mixture required for optimal growth of cell culture. PROTEOMICS, 10(9), 1886-1890. doi:10.1002/pmic.200900758

Dalby, M. J., García, A. J., & Salmeron-Sanchez, M. (2018). Receptor control in mesenchymal stem cell engineering. Nature Reviews Materials, 3(3). doi:10.1038/natrevmats.2017.91

Martino, M. M., Brkic, S., Bovo, E., Burger, M., Schaefer, D. J., Wolff, T., … Banfi, A. (2015). Extracellular Matrix and Growth Factor Engineering for Controlled Angiogenesis in Regenerative Medicine. Frontiers in Bioengineering and Biotechnology, 3. doi:10.3389/fbioe.2015.00045

Mitchell, A. C., Briquez, P. S., Hubbell, J. A., & Cochran, J. R. (2016). Engineering growth factors for regenerative medicine applications. Acta Biomaterialia, 30, 1-12. doi:10.1016/j.actbio.2015.11.007

Martino, M. M., Briquez, P. S., Maruyama, K., & Hubbell, J. A. (2015). Extracellular matrix-inspired growth factor delivery systems for bone regeneration. Advanced Drug Delivery Reviews, 94, 41-52. doi:10.1016/j.addr.2015.04.007

Jha, A. K., Tharp, K. M., Browne, S., Ye, J., Stahl, A., Yeghiazarians, Y., & Healy, K. E. (2016). Matrix metalloproteinase-13 mediated degradation of hyaluronic acid-based matrices orchestrates stem cell engraftment through vascular integration. Biomaterials, 89, 136-147. doi:10.1016/j.biomaterials.2016.02.023

Martino, M. M., Briquez, P. S., Ranga, A., Lutolf, M. P., & Hubbell, J. A. (2013). Heparin-binding domain of fibrin(ogen) binds growth factors and promotes tissue repair when incorporated within a synthetic matrix. Proceedings of the National Academy of Sciences, 110(12), 4563-4568. doi:10.1073/pnas.1221602110

Altankov, G., Grinnell, F., & Groth, T. (1996). Studies on the biocompatibility of materials: Fibroblast reorganization of substratum-bound fibronectin on surfaces varying in wettability. Journal of Biomedical Materials Research, 30(3), 385-391. doi:10.1002/(sici)1097-4636(199603)30:3<385::aid-jbm13>3.0.co;2-j

Elosegui-Artola, A., Oria, R., Chen, Y., Kosmalska, A., Pérez-González, C., Castro, N., … Roca-Cusachs, P. (2016). Mechanical regulation of a molecular clutch defines force transmission and transduction in response to matrix rigidity. Nature Cell Biology, 18(5), 540-548. doi:10.1038/ncb3336

Missirlis, D., & Spatz, J. P. (2013). Combined Effects of PEG Hydrogel Elasticity and Cell-Adhesive Coating on Fibroblast Adhesion and Persistent Migration. Biomacromolecules, 15(1), 195-205. doi:10.1021/bm4014827

Baugh, L., & Vogel, V. (2004). Structural changes of fibronectin adsorbed to model surfaces probed by fluorescence resonance energy transfer. Journal of Biomedical Materials Research, 69A(3), 525-534. doi:10.1002/jbm.a.30026

Faulón Marruecos, D., Kastantin, M., Schwartz, D. K., & Kaar, J. L. (2016). Dense Poly(ethylene glycol) Brushes Reduce Adsorption and Stabilize the Unfolded Conformation of Fibronectin. Biomacromolecules, 17(3), 1017-1025. doi:10.1021/acs.biomac.5b01657

Keselowsky, B. G., Collard, D. M., & García, A. J. (2003). Surface chemistry modulates fibronectin conformation and directs integrin binding and specificity to control cell adhesion. Journal of Biomedical Materials Research Part A, 66A(2), 247-259. doi:10.1002/jbm.a.10537

Wang, R. N., Green, J., Wang, Z., Deng, Y., Qiao, M., Peabody, M., … Shi, L. L. (2014). Bone Morphogenetic Protein (BMP) signaling in development and human diseases. Genes & Diseases, 1(1), 87-105. doi:10.1016/j.gendis.2014.07.005

Martino, M. M., Tortelli, F., Mochizuki, M., Traub, S., Ben-David, D., Kuhn, G. A., … Hubbell, J. A. (2011). Engineering the Growth Factor Microenvironment with Fibronectin Domains to Promote Wound and Bone Tissue Healing. Science Translational Medicine, 3(100). doi:10.1126/scitranslmed.3002614

Wijelath, E. S., Rahman, S., Namekata, M., Murray, J., Nishimura, T., Mostafavi-Pour, Z., … Sobel, M. (2006). Heparin-II Domain of Fibronectin Is a Vascular Endothelial Growth Factor-Binding Domain. Circulation Research, 99(8), 853-860. doi:10.1161/01.res.0000246849.17887.66

Wijelath, E. S., Rahman, S., Murray, J., Patel, Y., Savidge, G., & Sobel, M. (2004). Fibronectin promotes VEGF-induced CD34+ cell differentiation into endothelial cells. Journal of Vascular Surgery, 39(3), 655-660. doi:10.1016/j.jvs.2003.10.042

Wijelath, E. S., Murray, J., Rahman, S., Patel, Y., Ishida, A., Strand, K., … Sobel, M. (2002). Novel Vascular Endothelial Growth Factor Binding Domains of Fibronectin Enhance Vascular Endothelial Growth Factor Biological Activity. Circulation Research, 91(1), 25-31. doi:10.1161/01.res.0000026420.22406.79

Crouzier, T., Ren, K., Nicolas, C., Roy, C., & Picart, C. (2009). Layer-By-Layer Films as a Biomimetic Reservoir for rhBMP-2 Delivery: Controlled Differentiation of Myoblasts to Osteoblasts. Small, 5(5), 598-608. doi:10.1002/smll.200800804

Phelps, E. A., Landázuri, N., Thulé, P. M., Taylor, W. R., & García, A. J. (2009). Bioartificial matrices for therapeutic vascularization. Proceedings of the National Academy of Sciences, 107(8), 3323-3328. doi:10.1073/pnas.0905447107

Foster, G. A., Headen, D. M., González-García, C., Salmerón-Sánchez, M., Shirwan, H., & García, A. J. (2017). Protease-degradable microgels for protein delivery for vascularization. Biomaterials, 113, 170-175. doi:10.1016/j.biomaterials.2016.10.044

García, J. R., & García, A. J. (2015). Biomaterial-mediated strategies targeting vascularization for bone repair. Drug Delivery and Translational Research, 6(2), 77-95. doi:10.1007/s13346-015-0236-0

Salmerón-Sánchez, M., & Dalby, M. J. (2016). Synergistic growth factor microenvironments. Chemical Communications, 52(91), 13327-13336. doi:10.1039/c6cc06888j

Mao, Y., & Schwarzbauer, J. E. (2005). Fibronectin fibrillogenesis, a cell-mediated matrix assembly process. Matrix Biology, 24(6), 389-399. doi:10.1016/j.matbio.2005.06.008

Singh, P., Carraher, C., & Schwarzbauer, J. E. (2010). Assembly of Fibronectin Extracellular Matrix. Annual Review of Cell and Developmental Biology, 26(1), 397-419. doi:10.1146/annurev-cellbio-100109-104020

Llopis-Hernández, V., Cantini, M., González-García, C., & Salmerón-Sánchez, M. (2014). Material-based strategies to engineer fibronectin matrices for regenerative medicine. International Materials Reviews, 60(5), 245-264. doi:10.1179/1743280414y.0000000049

Moulisová, V., Gonzalez-García, C., Cantini, M., Rodrigo-Navarro, A., Weaver, J., Costell, M., … Salmerón-Sánchez, M. (2017). Engineered microenvironments for synergistic VEGF – Integrin signalling during vascularization. Biomaterials, 126, 61-74. doi:10.1016/j.biomaterials.2017.02.024

Ben-David, D., Srouji, S., Shapira-Schweitzer, K., Kossover, O., Ivanir, E., Kuhn, G., … Livne, E. (2013). Low dose BMP-2 treatment for bone repair using a PEGylated fibrinogen hydrogel matrix. Biomaterials, 34(12), 2902-2910. doi:10.1016/j.biomaterials.2013.01.035

Woods, A., Longley, R. L., Tumova, S., & Couchman, J. R. (2000). Syndecan-4 Binding to the High Affinity Heparin-Binding Domain of Fibronectin Drives Focal Adhesion Formation in Fibroblasts. Archives of Biochemistry and Biophysics, 374(1), 66-72. doi:10.1006/abbi.1999.1607

Guan, J.-L., & Hynes, R. O. (1990). Lymphoid cells recognize an alternatively spliced segment of fibronectin via the integrin receptor α4β1. Cell, 60(1), 53-61. doi:10.1016/0092-8674(90)90715-q

Wayner, E. A., Garcia-Pardo, A., Humphries, M. J., McDonald, J. A., & Carter, W. G. (1989). Identification and characterization of the T lymphocyte adhesion receptor for an alternative cell attachment domain (CS-1) in plasma fibronectin. Journal of Cell Biology, 109(3), 1321-1330. doi:10.1083/jcb.109.3.1321

Hielscher, A., Ellis, K., Qiu, C., Porterfield, J., & Gerecht, S. (2016). Fibronectin Deposition Participates in Extracellular Matrix Assembly and Vascular Morphogenesis. PLOS ONE, 11(1), e0147600. doi:10.1371/journal.pone.0147600

Zhou, X., Rowe, R. G., Hiraoka, N., George, J. P., Wirtz, D., Mosher, D. F., … Weiss, S. J. (2008). Fibronectin fibrillogenesis regulates three-dimensional neovessel formation. Genes & Development, 22(9), 1231-1243. doi:10.1101/gad.1643308

Pankov, R., & Yamada, K. M. (2002). Fibronectin at a glance. Journal of Cell Science, 115(20), 3861-3863. doi:10.1242/jcs.00059

Magnusson, M. K., & Mosher, D. F. (1998). Fibronectin. Arteriosclerosis, Thrombosis, and Vascular Biology, 18(9), 1363-1370. doi:10.1161/01.atv.18.9.1363

Leiss, M., Beckmann, K., Girós, A., Costell, M., & Fässler, R. (2008). The role of integrin binding sites in fibronectin matrix assembly in vivo. Current Opinion in Cell Biology, 20(5), 502-507. doi:10.1016/j.ceb.2008.06.001

Cahill, K. S. (2009). Prevalence, Complications, and Hospital Charges Associated With Use of Bone-Morphogenetic Proteins in Spinal Fusion Procedures. JAMA, 302(1), 58. doi:10.1001/jama.2009.956

James, A. W., LaChaud, G., Shen, J., Asatrian, G., Nguyen, V., Zhang, X., … Soo, C. (2016). A Review of the Clinical Side Effects of Bone Morphogenetic Protein-2. Tissue Engineering Part B: Reviews, 22(4), 284-297. doi:10.1089/ten.teb.2015.0357

Kyburz, K. A., & Anseth, K. S. (2015). Synthetic Mimics of the Extracellular Matrix: How Simple is Complex Enough? Annals of Biomedical Engineering, 43(3), 489-500. doi:10.1007/s10439-015-1297-4

Myeroff, C., & Archdeacon, M. (2011). Autogenous Bone Graft: Donor Sites and Techniques. Journal of Bone and Joint Surgery, 93(23), 2227-2236. doi:10.2106/jbjs.j.01513

Dimitriou, R., Mataliotakis, G. I., Angoules, A. G., Kanakaris, N. K., & Giannoudis, P. V. (2011). Complications following autologous bone graft harvesting from the iliac crest and using the RIA: A systematic review. Injury, 42, S3-S15. doi:10.1016/j.injury.2011.06.015

Curry, A. S., Pensa, N. W., Barlow, A. M., & Bellis, S. L. (2016). Taking cues from the extracellular matrix to design bone-mimetic regenerative scaffolds. Matrix Biology, 52-54, 397-412. doi:10.1016/j.matbio.2016.02.011

Wang, L., Fan, H., Zhang, Z.-Y., Lou, A.-J., Pei, G.-X., Jiang, S., … Jin, D. (2010). Osteogenesis and angiogenesis of tissue-engineered bone constructed by prevascularized β-tricalcium phosphate scaffold and mesenchymal stem cells. Biomaterials, 31(36), 9452-9461. doi:10.1016/j.biomaterials.2010.08.036

Almany, L., & Seliktar, D. (2005). Biosynthetic hydrogel scaffolds made from fibrinogen and polyethylene glycol for 3D cell cultures. Biomaterials, 26(15), 2467-2477. doi:10.1016/j.biomaterials.2004.06.047

Nakatsu, M. N., Sainson, R. C. A., Aoto, J. N., Taylor, K. L., Aitkenhead, M., Pérez-del-Pulgar, S., … Hughes, C. C. W. (2003). Angiogenic sprouting and capillary lumen formation modeled by human umbilical vein endothelial cells (HUVEC) in fibrin gels: the role of fibroblasts and Angiopoietin-1☆. Microvascular Research, 66(2), 102-112. doi:10.1016/s0026-2862(03)00045-1

Li, S., Nih, L. R., Bachman, H., Fei, P., Li, Y., Nam, E., … Segura, T. (2017). Hydrogels with precisely controlled integrin activation dictate vascular patterning and permeability. Nature Materials, 16(9), 953-961. doi:10.1038/nmat4954

Phelps, E. A., Enemchukwu, N. O., Fiore, V. F., Sy, J. C., Murthy, N., Sulchek, T. A., … García, A. J. (2011). Maleimide Cross-Linked Bioactive PEG Hydrogel Exhibits Improved Reaction Kinetics and Cross-Linking for Cell Encapsulation and In Situ Delivery. Advanced Materials, 24(1), 64-70. doi:10.1002/adma.201103574

Phelps, E. A., Templeman, K. L., Thulé, P. M., & García, A. J. (2013). Engineered VEGF-releasing PEG–MAL hydrogel for pancreatic islet vascularization. Drug Delivery and Translational Research, 5(2), 125-136. doi:10.1007/s13346-013-0142-2

Zhang, C., Ramanathan, A., & Karuri, N. W. (2014). Proteolytically stabilizing fibronectin without compromising cell and gelatin binding activity. Biotechnology Progress, 31(1), 277-288. doi:10.1002/btpr.2018

Zhang, C., Desai, R., Perez-Luna, V., & Karuri, N. (2014). PEGylation of lysine residues improves the proteolytic stability of fibronectin while retaining biological activity. Biotechnology Journal, 9(8), 1033-1043. doi:10.1002/biot.201400115

Francisco, A. T., Hwang, P. Y., Jeong, C. G., Jing, L., Chen, J., & Setton, L. A. (2014). Photocrosslinkable laminin-functionalized polyethylene glycol hydrogel for intervertebral disc regeneration. Acta Biomaterialia, 10(3), 1102-1111. doi:10.1016/j.actbio.2013.11.013

Seidlits, S. K., Drinnan, C. T., Petersen, R. R., Shear, J. B., Suggs, L. J., & Schmidt, C. E. (2011). Fibronectin–hyaluronic acid composite hydrogels for three-dimensional endothelial cell culture. Acta Biomaterialia, 7(6), 2401-2409. doi:10.1016/j.actbio.2011.03.024

Lutolf, M. P., & Hubbell, J. A. (2003). Synthesis and Physicochemical Characterization of End-Linked Poly(ethylene glycol)-co-peptide Hydrogels Formed by Michael-Type Addition. Biomacromolecules, 4(3), 713-722. doi:10.1021/bm025744e

Cambria, E., Renggli, K., Ahrens, C. C., Cook, C. D., Kroll, C., Krueger, A. T., … Griffith, L. G. (2015). Covalent Modification of Synthetic Hydrogels with Bioactive Proteins via Sortase-Mediated Ligation. Biomacromolecules, 16(8), 2316-2326. doi:10.1021/acs.biomac.5b00549

Leslie-Barbick, J. E., Moon, J. J., & West, J. L. (2009). Covalently-Immobilized Vascular Endothelial Growth Factor Promotes Endothelial Cell Tubulogenesis in Poly(ethylene glycol) Diacrylate Hydrogels. Journal of Biomaterials Science, Polymer Edition, 20(12), 1763-1779. doi:10.1163/156856208x386381

Ferrara, N., Gerber, H.-P., & LeCouter, J. (2003). The biology of VEGF and its receptors. Nature Medicine, 9(6), 669-676. doi:10.1038/nm0603-669

Phelps, E. A., & García, A. J. (2010). Engineering more than a cell: vascularization strategies in tissue engineering. Current Opinion in Biotechnology, 21(5), 704-709. doi:10.1016/j.copbio.2010.06.005

Ferrara, N., & Kerbel, R. S. (2005). Angiogenesis as a therapeutic target. Nature, 438(7070), 967-974. doi:10.1038/nature04483

Semenza, G. L. (2007). Vasculogenesis, angiogenesis, and arteriogenesis: Mechanisms of blood vessel formation and remodeling. Journal of Cellular Biochemistry, 102(4), 840-847. doi:10.1002/jcb.21523

Ribatti, D. (2016). The chick embryo chorioallantoic membrane (CAM). A multifaceted experimental model. Mechanisms of Development, 141, 70-77. doi:10.1016/j.mod.2016.05.003

Shekaran, A., García, J. R., Clark, A. Y., Kavanaugh, T. E., Lin, A. S., Guldberg, R. E., & García, A. J. (2014). Bone regeneration using an alpha 2 beta 1 integrin-specific hydrogel as a BMP-2 delivery vehicle. Biomaterials, 35(21), 5453-5461. doi:10.1016/j.biomaterials.2014.03.055

Cruz-Acuña, R., Quirós, M., Farkas, A. E., Dedhia, P. H., Huang, S., Siuda, D., … García, A. J. (2017). Synthetic hydrogels for human intestinal organoid generation and colonic wound repair. Nature Cell Biology, 19(11), 1326-1335. doi:10.1038/ncb3632

Cruz-Acuña, R., Quirós, M., Huang, S., Siuda, D., Spence, J. R., Nusrat, A., & García, A. J. (2018). PEG-4MAL hydrogels for human organoid generation, culture, and in vivo delivery. Nature Protocols, 13(9), 2102-2119. doi:10.1038/s41596-018-0036-3

Baker, A. E. G., Bahlmann, L. C., Tam, R. Y., Liu, J. C., Ganesh, A. N., Mitrousis, N., … Shoichet, M. S. (2019). Benchmarking to the Gold Standard: Hyaluronan‐Oxime Hydrogels Recapitulate Xenograft Models with In Vitro Breast Cancer Spheroid Culture. Advanced Materials, 31(36), 1901166. doi:10.1002/adma.201901166

Zhang, C., Hekmatfar, S., Ramanathan, A., & Karuri, N. W. (2013). PEGylated human plasma fibronectin is proteolytically stable, supports cell adhesion, cell migration, focal adhesion assembly, and fibronectin fibrillogenesis. Biotechnology Progress, 29(2), 493-504. doi:10.1002/btpr.1689

Zhang, C., Hekmatfer, S., & Karuri, N. W. (2013). A comparative study of polyethylene glycol hydrogels derivatized with the RGD peptide and the cell-binding domain of fibronectin. Journal of Biomedical Materials Research Part A, 102(1), 170-179. doi:10.1002/jbm.a.34687

Patel, S., Chaffotte, A. F., Goubard, F., & Pauthe, E. (2004). Urea-Induced Sequential Unfolding of Fibronectin:  A Fluorescence Spectroscopy and Circular Dichroism Study. Biochemistry, 43(6), 1724-1735. doi:10.1021/bi0347104

Patel, S., Chaffotte, A. F., Amana, B., Goubard, F., & Pauthe, E. (2006). In vitro denaturation–renaturation of fibronectin. Formation of multimers disulfide-linked and shuffling of intramolecular disulfide bonds. The International Journal of Biochemistry & Cell Biology, 38(9), 1547-1560. doi:10.1016/j.biocel.2006.03.005

Schwarzbauer, J. E. (1991). Identification of the fibronectin sequences required for assembly of a fibrillar matrix. Journal of Cell Biology, 113(6), 1463-1473. doi:10.1083/jcb.113.6.1463

Mitsi, M., Hong, Z., Costello, C. E., & Nugent, M. A. (2006). Heparin-Mediated Conformational Changes in Fibronectin Expose Vascular Endothelial Growth Factor Binding Sites. Biochemistry, 45(34), 10319-10328. doi:10.1021/bi060974p

Zwingenberger, S., Langanke, R., Vater, C., Lee, G., Niederlohmann, E., Sensenschmidt, M., … Stiehler, M. (2016). The effect of SDF-1α on low dose BMP-2 mediated bone regeneration by release from heparinized mineralized collagen type I matrix scaffolds in a murine critical size bone defect model. Journal of Biomedical Materials Research Part A, 104(9), 2126-2134. doi:10.1002/jbm.a.35744

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem