- -

Application of Ultrasound Pre-Treatment for Enhancing Extraction of Bioactive Compounds from Rice Straw

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Application of Ultrasound Pre-Treatment for Enhancing Extraction of Bioactive Compounds from Rice Straw

Mostrar el registro completo del ítem

Vieira-De Freitas, PA.; González Martínez, MC.; Chiralt Boix, MA. (2020). Application of Ultrasound Pre-Treatment for Enhancing Extraction of Bioactive Compounds from Rice Straw. Foods. 9(11):1-15. https://doi.org/10.3390/foods9111657

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/165967

Ficheros en el ítem

Metadatos del ítem

Título: Application of Ultrasound Pre-Treatment for Enhancing Extraction of Bioactive Compounds from Rice Straw
Autor: Vieira-De Freitas, Pedro Augusto González Martínez, María Consuelo Chiralt Boix, Mª Amparo
Entidad UPV: Universitat Politècnica de València. Departamento de Tecnología de Alimentos - Departament de Tecnologia d'Aliments
Universitat Politècnica de València. Instituto Universitario de Ingeniería de Alimentos para el Desarrollo - Institut Universitari d'Enginyeria d'Aliments per al Desenvolupament
Fecha difusión:
Resumen:
[EN] The extraction of water-soluble bioactive compounds using different green methods is an eco-friendly alternative for valorizing agricultural wastes such as rice straw (RS). In this study, aqueous extracts of RS ...[+]
Palabras clave: Bioactive compounds , Water extraction , Antioxidant activity , Pseudo-second order law , Antimicrobial activity , Heating , Combined methods
Derechos de uso: Reconocimiento (by)
Fuente:
Foods. (issn: 2304-8158 )
DOI: 10.3390/foods9111657
Editorial:
MDPI AG
Versión del editor: https://doi.org/10.3390/foods9111657
Código del Proyecto:
info:eu-repo/grantAgreement/GVA//GRISOLIAP%2F2019%2F115/
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-105207RB-I00/ES/USO DE ACIDOS FENOLICOS PARA LA OBTENCION DE MATERIALES MULTICAPA ACTIVOS PARA EL ENVASADO DE ALIMENTOS/
Agradecimientos:
Author P.A.V.F. is grateful to Generalitat Valenciana for the GrisoliaP/2019/115 grant.
Tipo: Artículo

References

Sharma, B., Vaish, B., Monika, Singh, U. K., Singh, P., & Singh, R. P. (2019). Recycling of Organic Wastes in Agriculture: An Environmental Perspective. International Journal of Environmental Research, 13(2), 409-429. doi:10.1007/s41742-019-00175-y

Ng, H.-M., Sin, L. T., Tee, T.-T., Bee, S.-T., Hui, D., Low, C.-Y., & Rahmat, A. R. (2015). Extraction of cellulose nanocrystals from plant sources for application as reinforcing agent in polymers. Composites Part B: Engineering, 75, 176-200. doi:10.1016/j.compositesb.2015.01.008

Peanparkdee, M., & Iwamoto, S. (2019). Bioactive compounds from by-products of rice cultivation and rice processing: Extraction and application in the food and pharmaceutical industries. Trends in Food Science & Technology, 86, 109-117. doi:10.1016/j.tifs.2019.02.041 [+]
Sharma, B., Vaish, B., Monika, Singh, U. K., Singh, P., & Singh, R. P. (2019). Recycling of Organic Wastes in Agriculture: An Environmental Perspective. International Journal of Environmental Research, 13(2), 409-429. doi:10.1007/s41742-019-00175-y

Ng, H.-M., Sin, L. T., Tee, T.-T., Bee, S.-T., Hui, D., Low, C.-Y., & Rahmat, A. R. (2015). Extraction of cellulose nanocrystals from plant sources for application as reinforcing agent in polymers. Composites Part B: Engineering, 75, 176-200. doi:10.1016/j.compositesb.2015.01.008

Peanparkdee, M., & Iwamoto, S. (2019). Bioactive compounds from by-products of rice cultivation and rice processing: Extraction and application in the food and pharmaceutical industries. Trends in Food Science & Technology, 86, 109-117. doi:10.1016/j.tifs.2019.02.041

FAOSTAThttp://www.fao.org/faostat/en/#data/QC/visualize

Sarkar, N., Ghosh, S. K., Bannerjee, S., & Aikat, K. (2012). Bioethanol production from agricultural wastes: An overview. Renewable Energy, 37(1), 19-27. doi:10.1016/j.renene.2011.06.045

Takano, M., & Hoshino, K. (2018). Bioethanol production from rice straw by simultaneous saccharification and fermentation with statistical optimized cellulase cocktail and fermenting fungus. Bioresources and Bioprocessing, 5(1). doi:10.1186/s40643-018-0203-y

Krishania, M., Kumar, V., & Sangwan, R. S. (2018). Integrated approach for extraction of xylose, cellulose, lignin and silica from rice straw. Bioresource Technology Reports, 1, 89-93. doi:10.1016/j.biteb.2018.01.001

Elhussieny, A., Faisal, M., D’Angelo, G., Aboulkhair, N. T., Everitt, N. M., & Fahim, I. S. (2020). Valorisation of shrimp and rice straw waste into food packaging applications. Ain Shams Engineering Journal, 11(4), 1219-1226. doi:10.1016/j.asej.2020.01.008

Menzel, C., González-Martínez, C., Vilaplana, F., Diretto, G., & Chiralt, A. (2020). Incorporation of natural antioxidants from rice straw into renewable starch films. International Journal of Biological Macromolecules, 146, 976-986. doi:10.1016/j.ijbiomac.2019.09.222

Li, Y., Qi, B., Luo, J., Khan, R., & Wan, Y. (2015). Separation and concentration of hydroxycinnamic acids in alkaline hydrolyzate from rice straw by nanofiltration. Separation and Purification Technology, 149, 315-321. doi:10.1016/j.seppur.2015.06.006

Barana, D., Salanti, A., Orlandi, M., Ali, D. S., & Zoia, L. (2016). Biorefinery process for the simultaneous recovery of lignin, hemicelluloses, cellulose nanocrystals and silica from rice husk and Arundo donax. Industrial Crops and Products, 86, 31-39. doi:10.1016/j.indcrop.2016.03.029

Adom, K. K., & Liu, R. H. (2002). Antioxidant Activity of Grains. Journal of Agricultural and Food Chemistry, 50(21), 6182-6187. doi:10.1021/jf0205099

Cheung, Y.-C., & Wu, J.-Y. (2013). Kinetic models and process parameters for ultrasound-assisted extraction of water-soluble components and polysaccharides from a medicinal fungus. Biochemical Engineering Journal, 79, 214-220. doi:10.1016/j.bej.2013.08.009

Ojha, K. S., Aznar, R., O’Donnell, C., & Tiwari, B. K. (2020). Ultrasound technology for the extraction of biologically active molecules from plant, animal and marine sources. TrAC Trends in Analytical Chemistry, 122, 115663. doi:10.1016/j.trac.2019.115663

Luque-Garcı́a, J. ., & Luque de Castro, M. . (2003). Ultrasound: a powerful tool for leaching. TrAC Trends in Analytical Chemistry, 22(1), 41-47. doi:10.1016/s0165-9936(03)00102-x

Ismail, B. B., Guo, M., Pu, Y., Wang, W., Ye, X., & Liu, D. (2019). Valorisation of baobab (Adansonia digitata) seeds by ultrasound assisted extraction of polyphenolics. Optimisation and comparison with conventional methods. Ultrasonics Sonochemistry, 52, 257-267. doi:10.1016/j.ultsonch.2018.11.023

Sumere, B. R., de Souza, M. C., dos Santos, M. P., Bezerra, R. M. N., da Cunha, D. T., Martinez, J., & Rostagno, M. A. (2018). Combining pressurized liquids with ultrasound to improve the extraction of phenolic compounds from pomegranate peel (Punica granatum L.). Ultrasonics Sonochemistry, 48, 151-162. doi:10.1016/j.ultsonch.2018.05.028

Wang, L., Boussetta, N., Lebovka, N., & Vorobiev, E. (2018). Selectivity of ultrasound-assisted aqueous extraction of valuable compounds from flesh and peel of apple tissues. LWT, 93, 511-516. doi:10.1016/j.lwt.2018.04.007

Dias, A. L. B., Arroio Sergio, C. S., Santos, P., Barbero, G. F., Rezende, C. A., & Martínez, J. (2017). Ultrasound-assisted extraction of bioactive compounds from dedo de moça pepper (Capsicum baccatum L.): Effects on the vegetable matrix and mathematical modeling. Journal of Food Engineering, 198, 36-44. doi:10.1016/j.jfoodeng.2016.11.020

Karimi, E., Mehrabanjoubani, P., Keshavarzian, M., Oskoueian, E., Jaafar, H. Z., & Abdolzadeh, A. (2014). Identification and quantification of phenolic and flavonoid components in straw and seed husk of some rice varieties (Oryza sativaL.) and their antioxidant properties. Journal of the Science of Food and Agriculture, 94(11), 2324-2330. doi:10.1002/jsfa.6567

Ho, Y. S., & McKay, G. (1998). Sorption of dye from aqueous solution by peat. Chemical Engineering Journal, 70(2), 115-124. doi:10.1016/s0923-0467(98)00076-1

Brand-Williams, W., Cuvelier, M. E., & Berset, C. (1995). Use of a free radical method to evaluate antioxidant activity. LWT - Food Science and Technology, 28(1), 25-30. doi:10.1016/s0023-6438(95)80008-5

Abdi, R. D., & Kerro Dego, O. (2019). Antimicrobial activity of Persicaria pensylvanica extract against Staphylococcus aureus. European Journal of Integrative Medicine, 29, 100921. doi:10.1016/j.eujim.2019.05.007

Requena, R., Jiménez-Quero, A., Vargas, M., Moriana, R., Chiralt, A., & Vilaplana, F. (2019). Integral Fractionation of Rice Husks into Bioactive Arabinoxylans, Cellulose Nanocrystals, and Silica Particles. ACS Sustainable Chemistry & Engineering, 7(6), 6275-6286. doi:10.1021/acssuschemeng.8b06692

Wang, Y., Liu, J., Liu, X., Zhang, X., Xu, Y., Leng, F., & Avwenagbiku, M. O. (2019). Kinetic modeling of the ultrasonic-assisted extraction of polysaccharide from Nostoc commune and physicochemical properties analysis. International Journal of Biological Macromolecules, 128, 421-428. doi:10.1016/j.ijbiomac.2018.12.247

González, N., Elissetche, J., Pereira, M., & Fernández, K. (2017). Extraction of polyphenols from and  : Experimental kinetics, modeling and evaluation of their antioxidant and antifungical activities. Industrial Crops and Products, 109, 737-745. doi:10.1016/j.indcrop.2017.09.038

Dutta, R., Sarkar, U., & Mukherjee, A. (2016). Pseudo-kinetics of batch extraction of Crotalaria juncea (Sunn hemp) seed oil using 2-propanol. Industrial Crops and Products, 87, 9-13. doi:10.1016/j.indcrop.2016.04.006

Tabaraki, R., Heidarizadi, E., & Benvidi, A. (2012). Optimization of ultrasonic-assisted extraction of pomegranate (Punica granatum L.) peel antioxidants by response surface methodology. Separation and Purification Technology, 98, 16-23. doi:10.1016/j.seppur.2012.06.038

Hayat, K., Abbas, S., Hussain, S., Shahzad, S. A., & Tahir, M. U. (2019). Effect of microwave and conventional oven heating on phenolic constituents, fatty acids, minerals and antioxidant potential of fennel seed. Industrial Crops and Products, 140, 111610. doi:10.1016/j.indcrop.2019.111610

Xu, G., Ye, X., Chen, J., & Liu, D. (2006). Effect of Heat Treatment on the Phenolic Compounds and Antioxidant Capacity of Citrus Peel Extract. Journal of Agricultural and Food Chemistry, 55(2), 330-335. doi:10.1021/jf062517l

Purohit, A. J., & Gogate, P. R. (2015). Ultrasound-Assisted Extraction ofβ-Carotene from Waste Carrot Residue: Effect of Operating Parameters and Type of Ultrasonic Irradiation. Separation Science and Technology, 50(10), 1507-1517. doi:10.1080/01496395.2014.978472

Wanyo, P., Meeso, N., & Siriamornpun, S. (2014). Effects of different treatments on the antioxidant properties and phenolic compounds of rice bran and rice husk. Food Chemistry, 157, 457-463. doi:10.1016/j.foodchem.2014.02.061

Niwa, Y., & Miyachi, Y. (1986). Antioxidant action of natural health products and Chinese herbs. Inflammation, 10(1), 79-91. doi:10.1007/bf00916043

Machado, I., Faccio, R., & Pistón, M. (2019). Characterization of the effects involved in ultrasound-assisted extraction of trace elements from artichoke leaves and soybean seeds. Ultrasonics Sonochemistry, 59, 104752. doi:10.1016/j.ultsonch.2019.104752

Chemat, F., Rombaut, N., Sicaire, A.-G., Meullemiestre, A., Fabiano-Tixier, A.-S., & Abert-Vian, M. (2017). Ultrasound assisted extraction of food and natural products. Mechanisms, techniques, combinations, protocols and applications. A review. Ultrasonics Sonochemistry, 34, 540-560. doi:10.1016/j.ultsonch.2016.06.035

Cravotto, G., & Cintas, P. (2006). Power ultrasound in organic synthesis: moving cavitational chemistry from academia to innovative and large-scale applications. Chem. Soc. Rev., 35(2), 180-196. doi:10.1039/b503848k

Seo, D.-J., & Sakoda, A. (2014). Assessment of the structural factors controlling the enzymatic saccharification of rice straw cellulose. Biomass and Bioenergy, 71, 47-57. doi:10.1016/j.biombioe.2014.10.027

Rostagno, M. A., Palma, M., & Barroso, C. G. (2007). Ultrasound-assisted extraction of isoflavones from soy beverages blended with fruit juices. Analytica Chimica Acta, 597(2), 265-272. doi:10.1016/j.aca.2007.07.006

Shi, J., Wang, Y., Wei, H., Hu, J., & Gao, M.-T. (2020). Structure analysis of condensed tannin from rice straw and its inhibitory effect on Staphylococcus aureus. Industrial Crops and Products, 145, 112130. doi:10.1016/j.indcrop.2020.112130

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem