Sharma, B., Vaish, B., Monika, Singh, U. K., Singh, P., & Singh, R. P. (2019). Recycling of Organic Wastes in Agriculture: An Environmental Perspective. International Journal of Environmental Research, 13(2), 409-429. doi:10.1007/s41742-019-00175-y
Ng, H.-M., Sin, L. T., Tee, T.-T., Bee, S.-T., Hui, D., Low, C.-Y., & Rahmat, A. R. (2015). Extraction of cellulose nanocrystals from plant sources for application as reinforcing agent in polymers. Composites Part B: Engineering, 75, 176-200. doi:10.1016/j.compositesb.2015.01.008
Peanparkdee, M., & Iwamoto, S. (2019). Bioactive compounds from by-products of rice cultivation and rice processing: Extraction and application in the food and pharmaceutical industries. Trends in Food Science & Technology, 86, 109-117. doi:10.1016/j.tifs.2019.02.041
[+]
Sharma, B., Vaish, B., Monika, Singh, U. K., Singh, P., & Singh, R. P. (2019). Recycling of Organic Wastes in Agriculture: An Environmental Perspective. International Journal of Environmental Research, 13(2), 409-429. doi:10.1007/s41742-019-00175-y
Ng, H.-M., Sin, L. T., Tee, T.-T., Bee, S.-T., Hui, D., Low, C.-Y., & Rahmat, A. R. (2015). Extraction of cellulose nanocrystals from plant sources for application as reinforcing agent in polymers. Composites Part B: Engineering, 75, 176-200. doi:10.1016/j.compositesb.2015.01.008
Peanparkdee, M., & Iwamoto, S. (2019). Bioactive compounds from by-products of rice cultivation and rice processing: Extraction and application in the food and pharmaceutical industries. Trends in Food Science & Technology, 86, 109-117. doi:10.1016/j.tifs.2019.02.041
FAOSTAThttp://www.fao.org/faostat/en/#data/QC/visualize
Sarkar, N., Ghosh, S. K., Bannerjee, S., & Aikat, K. (2012). Bioethanol production from agricultural wastes: An overview. Renewable Energy, 37(1), 19-27. doi:10.1016/j.renene.2011.06.045
Takano, M., & Hoshino, K. (2018). Bioethanol production from rice straw by simultaneous saccharification and fermentation with statistical optimized cellulase cocktail and fermenting fungus. Bioresources and Bioprocessing, 5(1). doi:10.1186/s40643-018-0203-y
Krishania, M., Kumar, V., & Sangwan, R. S. (2018). Integrated approach for extraction of xylose, cellulose, lignin and silica from rice straw. Bioresource Technology Reports, 1, 89-93. doi:10.1016/j.biteb.2018.01.001
Elhussieny, A., Faisal, M., D’Angelo, G., Aboulkhair, N. T., Everitt, N. M., & Fahim, I. S. (2020). Valorisation of shrimp and rice straw waste into food packaging applications. Ain Shams Engineering Journal, 11(4), 1219-1226. doi:10.1016/j.asej.2020.01.008
Menzel, C., González-Martínez, C., Vilaplana, F., Diretto, G., & Chiralt, A. (2020). Incorporation of natural antioxidants from rice straw into renewable starch films. International Journal of Biological Macromolecules, 146, 976-986. doi:10.1016/j.ijbiomac.2019.09.222
Li, Y., Qi, B., Luo, J., Khan, R., & Wan, Y. (2015). Separation and concentration of hydroxycinnamic acids in alkaline hydrolyzate from rice straw by nanofiltration. Separation and Purification Technology, 149, 315-321. doi:10.1016/j.seppur.2015.06.006
Barana, D., Salanti, A., Orlandi, M., Ali, D. S., & Zoia, L. (2016). Biorefinery process for the simultaneous recovery of lignin, hemicelluloses, cellulose nanocrystals and silica from rice husk and Arundo donax. Industrial Crops and Products, 86, 31-39. doi:10.1016/j.indcrop.2016.03.029
Adom, K. K., & Liu, R. H. (2002). Antioxidant Activity of Grains. Journal of Agricultural and Food Chemistry, 50(21), 6182-6187. doi:10.1021/jf0205099
Cheung, Y.-C., & Wu, J.-Y. (2013). Kinetic models and process parameters for ultrasound-assisted extraction of water-soluble components and polysaccharides from a medicinal fungus. Biochemical Engineering Journal, 79, 214-220. doi:10.1016/j.bej.2013.08.009
Ojha, K. S., Aznar, R., O’Donnell, C., & Tiwari, B. K. (2020). Ultrasound technology for the extraction of biologically active molecules from plant, animal and marine sources. TrAC Trends in Analytical Chemistry, 122, 115663. doi:10.1016/j.trac.2019.115663
Luque-Garcı́a, J. ., & Luque de Castro, M. . (2003). Ultrasound: a powerful tool for leaching. TrAC Trends in Analytical Chemistry, 22(1), 41-47. doi:10.1016/s0165-9936(03)00102-x
Ismail, B. B., Guo, M., Pu, Y., Wang, W., Ye, X., & Liu, D. (2019). Valorisation of baobab (Adansonia digitata) seeds by ultrasound assisted extraction of polyphenolics. Optimisation and comparison with conventional methods. Ultrasonics Sonochemistry, 52, 257-267. doi:10.1016/j.ultsonch.2018.11.023
Sumere, B. R., de Souza, M. C., dos Santos, M. P., Bezerra, R. M. N., da Cunha, D. T., Martinez, J., & Rostagno, M. A. (2018). Combining pressurized liquids with ultrasound to improve the extraction of phenolic compounds from pomegranate peel (Punica granatum L.). Ultrasonics Sonochemistry, 48, 151-162. doi:10.1016/j.ultsonch.2018.05.028
Wang, L., Boussetta, N., Lebovka, N., & Vorobiev, E. (2018). Selectivity of ultrasound-assisted aqueous extraction of valuable compounds from flesh and peel of apple tissues. LWT, 93, 511-516. doi:10.1016/j.lwt.2018.04.007
Dias, A. L. B., Arroio Sergio, C. S., Santos, P., Barbero, G. F., Rezende, C. A., & Martínez, J. (2017). Ultrasound-assisted extraction of bioactive compounds from dedo de moça pepper (Capsicum baccatum L.): Effects on the vegetable matrix and mathematical modeling. Journal of Food Engineering, 198, 36-44. doi:10.1016/j.jfoodeng.2016.11.020
Karimi, E., Mehrabanjoubani, P., Keshavarzian, M., Oskoueian, E., Jaafar, H. Z., & Abdolzadeh, A. (2014). Identification and quantification of phenolic and flavonoid components in straw and seed husk of some rice varieties (Oryza sativaL.) and their antioxidant properties. Journal of the Science of Food and Agriculture, 94(11), 2324-2330. doi:10.1002/jsfa.6567
Ho, Y. S., & McKay, G. (1998). Sorption of dye from aqueous solution by peat. Chemical Engineering Journal, 70(2), 115-124. doi:10.1016/s0923-0467(98)00076-1
Brand-Williams, W., Cuvelier, M. E., & Berset, C. (1995). Use of a free radical method to evaluate antioxidant activity. LWT - Food Science and Technology, 28(1), 25-30. doi:10.1016/s0023-6438(95)80008-5
Abdi, R. D., & Kerro Dego, O. (2019). Antimicrobial activity of Persicaria pensylvanica extract against Staphylococcus aureus. European Journal of Integrative Medicine, 29, 100921. doi:10.1016/j.eujim.2019.05.007
Requena, R., Jiménez-Quero, A., Vargas, M., Moriana, R., Chiralt, A., & Vilaplana, F. (2019). Integral Fractionation of Rice Husks into Bioactive Arabinoxylans, Cellulose Nanocrystals, and Silica Particles. ACS Sustainable Chemistry & Engineering, 7(6), 6275-6286. doi:10.1021/acssuschemeng.8b06692
Wang, Y., Liu, J., Liu, X., Zhang, X., Xu, Y., Leng, F., & Avwenagbiku, M. O. (2019). Kinetic modeling of the ultrasonic-assisted extraction of polysaccharide from Nostoc commune and physicochemical properties analysis. International Journal of Biological Macromolecules, 128, 421-428. doi:10.1016/j.ijbiomac.2018.12.247
González, N., Elissetche, J., Pereira, M., & Fernández, K. (2017). Extraction of polyphenols from and : Experimental kinetics, modeling and evaluation of their antioxidant and antifungical activities. Industrial Crops and Products, 109, 737-745. doi:10.1016/j.indcrop.2017.09.038
Dutta, R., Sarkar, U., & Mukherjee, A. (2016). Pseudo-kinetics of batch extraction of Crotalaria juncea (Sunn hemp) seed oil using 2-propanol. Industrial Crops and Products, 87, 9-13. doi:10.1016/j.indcrop.2016.04.006
Tabaraki, R., Heidarizadi, E., & Benvidi, A. (2012). Optimization of ultrasonic-assisted extraction of pomegranate (Punica granatum L.) peel antioxidants by response surface methodology. Separation and Purification Technology, 98, 16-23. doi:10.1016/j.seppur.2012.06.038
Hayat, K., Abbas, S., Hussain, S., Shahzad, S. A., & Tahir, M. U. (2019). Effect of microwave and conventional oven heating on phenolic constituents, fatty acids, minerals and antioxidant potential of fennel seed. Industrial Crops and Products, 140, 111610. doi:10.1016/j.indcrop.2019.111610
Xu, G., Ye, X., Chen, J., & Liu, D. (2006). Effect of Heat Treatment on the Phenolic Compounds and Antioxidant Capacity of Citrus Peel Extract. Journal of Agricultural and Food Chemistry, 55(2), 330-335. doi:10.1021/jf062517l
Purohit, A. J., & Gogate, P. R. (2015). Ultrasound-Assisted Extraction ofβ-Carotene from Waste Carrot Residue: Effect of Operating Parameters and Type of Ultrasonic Irradiation. Separation Science and Technology, 50(10), 1507-1517. doi:10.1080/01496395.2014.978472
Wanyo, P., Meeso, N., & Siriamornpun, S. (2014). Effects of different treatments on the antioxidant properties and phenolic compounds of rice bran and rice husk. Food Chemistry, 157, 457-463. doi:10.1016/j.foodchem.2014.02.061
Niwa, Y., & Miyachi, Y. (1986). Antioxidant action of natural health products and Chinese herbs. Inflammation, 10(1), 79-91. doi:10.1007/bf00916043
Machado, I., Faccio, R., & Pistón, M. (2019). Characterization of the effects involved in ultrasound-assisted extraction of trace elements from artichoke leaves and soybean seeds. Ultrasonics Sonochemistry, 59, 104752. doi:10.1016/j.ultsonch.2019.104752
Chemat, F., Rombaut, N., Sicaire, A.-G., Meullemiestre, A., Fabiano-Tixier, A.-S., & Abert-Vian, M. (2017). Ultrasound assisted extraction of food and natural products. Mechanisms, techniques, combinations, protocols and applications. A review. Ultrasonics Sonochemistry, 34, 540-560. doi:10.1016/j.ultsonch.2016.06.035
Cravotto, G., & Cintas, P. (2006). Power ultrasound in organic synthesis: moving cavitational chemistry from academia to innovative and large-scale applications. Chem. Soc. Rev., 35(2), 180-196. doi:10.1039/b503848k
Seo, D.-J., & Sakoda, A. (2014). Assessment of the structural factors controlling the enzymatic saccharification of rice straw cellulose. Biomass and Bioenergy, 71, 47-57. doi:10.1016/j.biombioe.2014.10.027
Rostagno, M. A., Palma, M., & Barroso, C. G. (2007). Ultrasound-assisted extraction of isoflavones from soy beverages blended with fruit juices. Analytica Chimica Acta, 597(2), 265-272. doi:10.1016/j.aca.2007.07.006
Shi, J., Wang, Y., Wei, H., Hu, J., & Gao, M.-T. (2020). Structure analysis of condensed tannin from rice straw and its inhibitory effect on Staphylococcus aureus. Industrial Crops and Products, 145, 112130. doi:10.1016/j.indcrop.2020.112130
[-]