- -

Application of Ultrasound Pre-Treatment for Enhancing Extraction of Bioactive Compounds from Rice Straw

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Application of Ultrasound Pre-Treatment for Enhancing Extraction of Bioactive Compounds from Rice Straw

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Vieira-De Freitas, Pedro Augusto es_ES
dc.contributor.author González Martínez, María Consuelo es_ES
dc.contributor.author Chiralt Boix, Mª Amparo es_ES
dc.date.accessioned 2021-05-05T03:33:09Z
dc.date.available 2021-05-05T03:33:09Z
dc.date.issued 2020-11 es_ES
dc.identifier.issn 2304-8158 es_ES
dc.identifier.uri http://hdl.handle.net/10251/165967
dc.description.abstract [EN] The extraction of water-soluble bioactive compounds using different green methods is an eco-friendly alternative for valorizing agricultural wastes such as rice straw (RS). In this study, aqueous extracts of RS (particles < 500 mu m) were obtained using ultrasound (US), reflux heating (HT), stirring (ST) and a combination of US and ST (USST) or HT (USHT). The extraction kinetics was well fitted to a pseudo-second order model. As regards phenolic compound yield, the US method (342 mg gallic acid (GAE). 100 g(-1) RS) was more effective than the ST treatment (256 mg GAE center dot 100 g(-1) RS), reaching an asymptotic value after 30 min of process. When combined with HT (USHT), the US pre-treatment led to the highest extraction of phenolic compounds from RS (486 mg GAE center dot 100 g(-1) RS) while the extract exhibited the greatest antioxidant activity. Furthermore, the USHT extract reduced the initial counts of Listeria innocua by 1.7 logarithmic cycles. Therefore, the thermal aqueous extraction of RS applying the 30 min US pre-treatment, represents a green and efficient approach to obtain bioactive extracts for food applications. es_ES
dc.description.sponsorship Author P.A.V.F. is grateful to Generalitat Valenciana for the GrisoliaP/2019/115 grant. es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Foods es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Bioactive compounds es_ES
dc.subject Water extraction es_ES
dc.subject Antioxidant activity es_ES
dc.subject Pseudo-second order law es_ES
dc.subject Antimicrobial activity es_ES
dc.subject Heating es_ES
dc.subject Combined methods es_ES
dc.subject.classification TECNOLOGIA DE ALIMENTOS es_ES
dc.title Application of Ultrasound Pre-Treatment for Enhancing Extraction of Bioactive Compounds from Rice Straw es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/foods9111657 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//GRISOLIAP%2F2019%2F115/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-105207RB-I00/ES/USO DE ACIDOS FENOLICOS PARA LA OBTENCION DE MATERIALES MULTICAPA ACTIVOS PARA EL ENVASADO DE ALIMENTOS/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Tecnología de Alimentos - Departament de Tecnologia d'Aliments es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Ingeniería de Alimentos para el Desarrollo - Institut Universitari d'Enginyeria d'Aliments per al Desenvolupament es_ES
dc.description.bibliographicCitation Vieira-De Freitas, PA.; González Martínez, MC.; Chiralt Boix, MA. (2020). Application of Ultrasound Pre-Treatment for Enhancing Extraction of Bioactive Compounds from Rice Straw. Foods. 9(11):1-15. https://doi.org/10.3390/foods9111657 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/foods9111657 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 15 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 9 es_ES
dc.description.issue 11 es_ES
dc.identifier.pmid 33198371 es_ES
dc.identifier.pmcid PMC7697156 es_ES
dc.relation.pasarela S\433516 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.description.references Sharma, B., Vaish, B., Monika, Singh, U. K., Singh, P., & Singh, R. P. (2019). Recycling of Organic Wastes in Agriculture: An Environmental Perspective. International Journal of Environmental Research, 13(2), 409-429. doi:10.1007/s41742-019-00175-y es_ES
dc.description.references Ng, H.-M., Sin, L. T., Tee, T.-T., Bee, S.-T., Hui, D., Low, C.-Y., & Rahmat, A. R. (2015). Extraction of cellulose nanocrystals from plant sources for application as reinforcing agent in polymers. Composites Part B: Engineering, 75, 176-200. doi:10.1016/j.compositesb.2015.01.008 es_ES
dc.description.references Peanparkdee, M., & Iwamoto, S. (2019). Bioactive compounds from by-products of rice cultivation and rice processing: Extraction and application in the food and pharmaceutical industries. Trends in Food Science & Technology, 86, 109-117. doi:10.1016/j.tifs.2019.02.041 es_ES
dc.description.references FAOSTAThttp://www.fao.org/faostat/en/#data/QC/visualize es_ES
dc.description.references Sarkar, N., Ghosh, S. K., Bannerjee, S., & Aikat, K. (2012). Bioethanol production from agricultural wastes: An overview. Renewable Energy, 37(1), 19-27. doi:10.1016/j.renene.2011.06.045 es_ES
dc.description.references Takano, M., & Hoshino, K. (2018). Bioethanol production from rice straw by simultaneous saccharification and fermentation with statistical optimized cellulase cocktail and fermenting fungus. Bioresources and Bioprocessing, 5(1). doi:10.1186/s40643-018-0203-y es_ES
dc.description.references Krishania, M., Kumar, V., & Sangwan, R. S. (2018). Integrated approach for extraction of xylose, cellulose, lignin and silica from rice straw. Bioresource Technology Reports, 1, 89-93. doi:10.1016/j.biteb.2018.01.001 es_ES
dc.description.references Elhussieny, A., Faisal, M., D’Angelo, G., Aboulkhair, N. T., Everitt, N. M., & Fahim, I. S. (2020). Valorisation of shrimp and rice straw waste into food packaging applications. Ain Shams Engineering Journal, 11(4), 1219-1226. doi:10.1016/j.asej.2020.01.008 es_ES
dc.description.references Menzel, C., González-Martínez, C., Vilaplana, F., Diretto, G., & Chiralt, A. (2020). Incorporation of natural antioxidants from rice straw into renewable starch films. International Journal of Biological Macromolecules, 146, 976-986. doi:10.1016/j.ijbiomac.2019.09.222 es_ES
dc.description.references Li, Y., Qi, B., Luo, J., Khan, R., & Wan, Y. (2015). Separation and concentration of hydroxycinnamic acids in alkaline hydrolyzate from rice straw by nanofiltration. Separation and Purification Technology, 149, 315-321. doi:10.1016/j.seppur.2015.06.006 es_ES
dc.description.references Barana, D., Salanti, A., Orlandi, M., Ali, D. S., & Zoia, L. (2016). Biorefinery process for the simultaneous recovery of lignin, hemicelluloses, cellulose nanocrystals and silica from rice husk and Arundo donax. Industrial Crops and Products, 86, 31-39. doi:10.1016/j.indcrop.2016.03.029 es_ES
dc.description.references Adom, K. K., & Liu, R. H. (2002). Antioxidant Activity of Grains. Journal of Agricultural and Food Chemistry, 50(21), 6182-6187. doi:10.1021/jf0205099 es_ES
dc.description.references Cheung, Y.-C., & Wu, J.-Y. (2013). Kinetic models and process parameters for ultrasound-assisted extraction of water-soluble components and polysaccharides from a medicinal fungus. Biochemical Engineering Journal, 79, 214-220. doi:10.1016/j.bej.2013.08.009 es_ES
dc.description.references Ojha, K. S., Aznar, R., O’Donnell, C., & Tiwari, B. K. (2020). Ultrasound technology for the extraction of biologically active molecules from plant, animal and marine sources. TrAC Trends in Analytical Chemistry, 122, 115663. doi:10.1016/j.trac.2019.115663 es_ES
dc.description.references Luque-Garcı́a, J. ., & Luque de Castro, M. . (2003). Ultrasound: a powerful tool for leaching. TrAC Trends in Analytical Chemistry, 22(1), 41-47. doi:10.1016/s0165-9936(03)00102-x es_ES
dc.description.references Ismail, B. B., Guo, M., Pu, Y., Wang, W., Ye, X., & Liu, D. (2019). Valorisation of baobab (Adansonia digitata) seeds by ultrasound assisted extraction of polyphenolics. Optimisation and comparison with conventional methods. Ultrasonics Sonochemistry, 52, 257-267. doi:10.1016/j.ultsonch.2018.11.023 es_ES
dc.description.references Sumere, B. R., de Souza, M. C., dos Santos, M. P., Bezerra, R. M. N., da Cunha, D. T., Martinez, J., & Rostagno, M. A. (2018). Combining pressurized liquids with ultrasound to improve the extraction of phenolic compounds from pomegranate peel (Punica granatum L.). Ultrasonics Sonochemistry, 48, 151-162. doi:10.1016/j.ultsonch.2018.05.028 es_ES
dc.description.references Wang, L., Boussetta, N., Lebovka, N., & Vorobiev, E. (2018). Selectivity of ultrasound-assisted aqueous extraction of valuable compounds from flesh and peel of apple tissues. LWT, 93, 511-516. doi:10.1016/j.lwt.2018.04.007 es_ES
dc.description.references Dias, A. L. B., Arroio Sergio, C. S., Santos, P., Barbero, G. F., Rezende, C. A., & Martínez, J. (2017). Ultrasound-assisted extraction of bioactive compounds from dedo de moça pepper (Capsicum baccatum L.): Effects on the vegetable matrix and mathematical modeling. Journal of Food Engineering, 198, 36-44. doi:10.1016/j.jfoodeng.2016.11.020 es_ES
dc.description.references Karimi, E., Mehrabanjoubani, P., Keshavarzian, M., Oskoueian, E., Jaafar, H. Z., & Abdolzadeh, A. (2014). Identification and quantification of phenolic and flavonoid components in straw and seed husk of some rice varieties (Oryza sativaL.) and their antioxidant properties. Journal of the Science of Food and Agriculture, 94(11), 2324-2330. doi:10.1002/jsfa.6567 es_ES
dc.description.references Ho, Y. S., & McKay, G. (1998). Sorption of dye from aqueous solution by peat. Chemical Engineering Journal, 70(2), 115-124. doi:10.1016/s0923-0467(98)00076-1 es_ES
dc.description.references Brand-Williams, W., Cuvelier, M. E., & Berset, C. (1995). Use of a free radical method to evaluate antioxidant activity. LWT - Food Science and Technology, 28(1), 25-30. doi:10.1016/s0023-6438(95)80008-5 es_ES
dc.description.references Abdi, R. D., & Kerro Dego, O. (2019). Antimicrobial activity of Persicaria pensylvanica extract against Staphylococcus aureus. European Journal of Integrative Medicine, 29, 100921. doi:10.1016/j.eujim.2019.05.007 es_ES
dc.description.references Requena, R., Jiménez-Quero, A., Vargas, M., Moriana, R., Chiralt, A., & Vilaplana, F. (2019). Integral Fractionation of Rice Husks into Bioactive Arabinoxylans, Cellulose Nanocrystals, and Silica Particles. ACS Sustainable Chemistry & Engineering, 7(6), 6275-6286. doi:10.1021/acssuschemeng.8b06692 es_ES
dc.description.references Wang, Y., Liu, J., Liu, X., Zhang, X., Xu, Y., Leng, F., & Avwenagbiku, M. O. (2019). Kinetic modeling of the ultrasonic-assisted extraction of polysaccharide from Nostoc commune and physicochemical properties analysis. International Journal of Biological Macromolecules, 128, 421-428. doi:10.1016/j.ijbiomac.2018.12.247 es_ES
dc.description.references González, N., Elissetche, J., Pereira, M., & Fernández, K. (2017). Extraction of polyphenols from and  : Experimental kinetics, modeling and evaluation of their antioxidant and antifungical activities. Industrial Crops and Products, 109, 737-745. doi:10.1016/j.indcrop.2017.09.038 es_ES
dc.description.references Dutta, R., Sarkar, U., & Mukherjee, A. (2016). Pseudo-kinetics of batch extraction of Crotalaria juncea (Sunn hemp) seed oil using 2-propanol. Industrial Crops and Products, 87, 9-13. doi:10.1016/j.indcrop.2016.04.006 es_ES
dc.description.references Tabaraki, R., Heidarizadi, E., & Benvidi, A. (2012). Optimization of ultrasonic-assisted extraction of pomegranate (Punica granatum L.) peel antioxidants by response surface methodology. Separation and Purification Technology, 98, 16-23. doi:10.1016/j.seppur.2012.06.038 es_ES
dc.description.references Hayat, K., Abbas, S., Hussain, S., Shahzad, S. A., & Tahir, M. U. (2019). Effect of microwave and conventional oven heating on phenolic constituents, fatty acids, minerals and antioxidant potential of fennel seed. Industrial Crops and Products, 140, 111610. doi:10.1016/j.indcrop.2019.111610 es_ES
dc.description.references Xu, G., Ye, X., Chen, J., & Liu, D. (2006). Effect of Heat Treatment on the Phenolic Compounds and Antioxidant Capacity of Citrus Peel Extract. Journal of Agricultural and Food Chemistry, 55(2), 330-335. doi:10.1021/jf062517l es_ES
dc.description.references Purohit, A. J., & Gogate, P. R. (2015). Ultrasound-Assisted Extraction ofβ-Carotene from Waste Carrot Residue: Effect of Operating Parameters and Type of Ultrasonic Irradiation. Separation Science and Technology, 50(10), 1507-1517. doi:10.1080/01496395.2014.978472 es_ES
dc.description.references Wanyo, P., Meeso, N., & Siriamornpun, S. (2014). Effects of different treatments on the antioxidant properties and phenolic compounds of rice bran and rice husk. Food Chemistry, 157, 457-463. doi:10.1016/j.foodchem.2014.02.061 es_ES
dc.description.references Niwa, Y., & Miyachi, Y. (1986). Antioxidant action of natural health products and Chinese herbs. Inflammation, 10(1), 79-91. doi:10.1007/bf00916043 es_ES
dc.description.references Machado, I., Faccio, R., & Pistón, M. (2019). Characterization of the effects involved in ultrasound-assisted extraction of trace elements from artichoke leaves and soybean seeds. Ultrasonics Sonochemistry, 59, 104752. doi:10.1016/j.ultsonch.2019.104752 es_ES
dc.description.references Chemat, F., Rombaut, N., Sicaire, A.-G., Meullemiestre, A., Fabiano-Tixier, A.-S., & Abert-Vian, M. (2017). Ultrasound assisted extraction of food and natural products. Mechanisms, techniques, combinations, protocols and applications. A review. Ultrasonics Sonochemistry, 34, 540-560. doi:10.1016/j.ultsonch.2016.06.035 es_ES
dc.description.references Cravotto, G., & Cintas, P. (2006). Power ultrasound in organic synthesis: moving cavitational chemistry from academia to innovative and large-scale applications. Chem. Soc. Rev., 35(2), 180-196. doi:10.1039/b503848k es_ES
dc.description.references Seo, D.-J., & Sakoda, A. (2014). Assessment of the structural factors controlling the enzymatic saccharification of rice straw cellulose. Biomass and Bioenergy, 71, 47-57. doi:10.1016/j.biombioe.2014.10.027 es_ES
dc.description.references Rostagno, M. A., Palma, M., & Barroso, C. G. (2007). Ultrasound-assisted extraction of isoflavones from soy beverages blended with fruit juices. Analytica Chimica Acta, 597(2), 265-272. doi:10.1016/j.aca.2007.07.006 es_ES
dc.description.references Shi, J., Wang, Y., Wei, H., Hu, J., & Gao, M.-T. (2020). Structure analysis of condensed tannin from rice straw and its inhibitory effect on Staphylococcus aureus. Industrial Crops and Products, 145, 112130. doi:10.1016/j.indcrop.2020.112130 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem