Mostrar el registro sencillo del ítem
dc.contributor.author | Guzman Castillo, Paola Fernanda | es_ES |
dc.contributor.author | Arce Vila, Pau | es_ES |
dc.contributor.author | Guerri Cebollada, Juan Carlos | es_ES |
dc.date.accessioned | 2021-05-12T03:32:25Z | |
dc.date.available | 2021-05-12T03:32:25Z | |
dc.date.issued | 2020-09-01 | es_ES |
dc.identifier.issn | 1570-8705 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/166219 | |
dc.description.abstract | [EN] The paper is based on the study of the performance of a Dynamic Adaptive Streaming over HTTP (DASH) system in the context of 3D video streaming, using different scenarios and network conditions, specifically with bandwidth variations. The objective is the development of a framework for the evaluation of QoE in 3D adaptive video streaming scenarios, which allows to analyze the impact on the user's Quality of Experience (QoE) using different bandwidth variation patterns (switching frequency, range and type of variation), among other aspects. A set of subjective tests will be carried out, with the aim of identifying the correlation between the quality of the user experience and the frequency, type, range and temporal location of the bandwidth switching events. The proposed framework allows performance measurements to be carried out in an automated and systematic way for the evaluation of DASH systems in 2D and 3D video streaming service. We have used Puppeteer, the Node.js library developed by Google, which provides a high-level API, to automate actions on Chrome Devtools Protocol, such as starting playback, causing bandwidth changes and saving the results of quality change processes, timestamps, stalls and so on. From this data, a processing is made to allow the reconstruction of the visualized video, as well as the extraction of quality metrics and the users' QoE assessment using the ITU-T P.1203 recommendation. | es_ES |
dc.description.sponsorship | This work has been partially supported by Spanish Ministry of Science, Innovation and Universities and by European Union through grant RTI2018-098085-BC41 (MCUI/AEI/FEDER), SSENCE project (Telefonica Chair UPV), PROMETEO/2019/109 (Generalitat Valenciana) and UPV Line I + D + i "Technologies for distribution and processing of multimedia information and QoE". | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Elsevier | es_ES |
dc.relation.ispartof | Ad Hoc Networks | es_ES |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | Performance evaluation | es_ES |
dc.subject | 3D video | es_ES |
dc.subject | DASH | es_ES |
dc.subject | Puppeteer | es_ES |
dc.subject | Quality of Experience | es_ES |
dc.subject | Testbed evaluation | es_ES |
dc.subject | ITU-T P.1203 | es_ES |
dc.subject.classification | TEORIA DE LA SEÑAL Y COMUNICACIONES | es_ES |
dc.subject.classification | INGENIERIA TELEMATICA | es_ES |
dc.title | Automatic QoE evaluation for asymmetric encoding of 3D videos for DASH streaming service | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1016/j.adhoc.2020.102184 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-098085-B-C41/ES/DYNAMIC ACOUSTIC NETWORKS FOR CHANGING ENVIRONMENTS/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//PROMETEO%2F2019%2F109/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario de Telecomunicación y Aplicaciones Multimedia - Institut Universitari de Telecomunicacions i Aplicacions Multimèdia | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions | es_ES |
dc.description.bibliographicCitation | Guzman Castillo, PF.; Arce Vila, P.; Guerri Cebollada, JC. (2020). Automatic QoE evaluation for asymmetric encoding of 3D videos for DASH streaming service. Ad Hoc Networks. 106:1-15. https://doi.org/10.1016/j.adhoc.2020.102184 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1016/j.adhoc.2020.102184 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 15 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 106 | es_ES |
dc.relation.pasarela | S\416413 | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.contributor.funder | European Regional Development Fund | es_ES |
dc.contributor.funder | Universitat Politècnica de València | es_ES |
dc.contributor.funder | Ministerio de Ciencia, Innovación y Universidades | es_ES |
dc.contributor.funder | Cátedra Telefónica, Universitat Politècnica de València | es_ES |
dc.description.references | Cisco, “Cisco Visual Networking Index : forecast and Trends, 2017–2022 White Paper.” 2019. | es_ES |
dc.description.references | ISO/IEC, “ISO/IEC 23009-1 Information technology — Dynamic adaptive streaming over HTTP (DASH) — Part 1: media presentation description and segment formats Technologies, 2019,” 2019. | es_ES |
dc.description.references | T. Su, A. Javadtalab, A. Yassine, and S. Shirmohammadi, “A DASH-based 3D multi-view video rate control system A DASH-Based 3D Multi-view Video Rate Control System,” 2014. | es_ES |
dc.description.references | Hoßfeld, T., Seufert, M., Sieber, C., Zinner, T., & Tran-Gia, P. (2015). Identifying QoE optimal adaptation of HTTP adaptive streaming based on subjective studies. Computer Networks, 81, 320-332. doi:10.1016/j.comnet.2015.02.015 | es_ES |
dc.description.references | Barman, N., & Martini, M. G. (2019). QoE Modeling for HTTP Adaptive Video Streaming–A Survey and Open Challenges. IEEE Access, 7, 30831-30859. doi:10.1109/access.2019.2901778 | es_ES |
dc.description.references | “Puppeteer.” [Online]. Available: https://github.com/GoogleChrome/puppeteer. [Accessed: 01-Jul-2019]. | es_ES |
dc.description.references | Akar, G. B., Tekalp, A. M., Fehn, C., & Civanlar, M. R. (2007). Transport Methods in 3DTV—A Survey. IEEE Transactions on Circuits and Systems for Video Technology, 17(11), 1622-1630. doi:10.1109/tcsvt.2007.905365 | es_ES |
dc.description.references | Merkle, P., Müller, K., & Wiegand, T. (2010). 3D video: acquisition, coding, and display. IEEE Transactions on Consumer Electronics, 56(2), 946-950. doi:10.1109/tce.2010.5506024 | es_ES |
dc.description.references | Gürler, C. G., Görkemli, B., Saygili, G., & Tekalp, A. M. (2011). Flexible Transport of 3-D Video Over Networks. Proceedings of the IEEE, 99(4), 694-707. doi:10.1109/jproc.2010.2100010 | es_ES |
dc.description.references | Vetro, A., Wiegand, T., & Sullivan, G. J. (2011). Overview of the Stereo and Multiview Video Coding Extensions of the H.264/MPEG-4 AVC Standard. Proceedings of the IEEE, 99(4), 626-642. doi:10.1109/jproc.2010.2098830 | es_ES |
dc.description.references | Hannuksela, M. M., Gabbouj, M., Rusanovskyy, D., Su, W., Chen, L., Li, R., … Li, H. (2013). Multiview-Video-Plus-Depth Coding Based on the Advanced Video Coding Standard. IEEE Transactions on Image Processing, 22(9), 3449-3458. doi:10.1109/tip.2013.2269274 | es_ES |
dc.description.references | Chikkerur, S., Sundaram, V., Reisslein, M., & Karam, L. J. (2011). Objective Video Quality Assessment Methods: A Classification, Review, and Performance Comparison. IEEE Transactions on Broadcasting, 57(2), 165-182. doi:10.1109/tbc.2011.2104671 | es_ES |
dc.description.references | T. Wiegand and G.J. Sullivan, “The H.264/AVC Video Coding Standard,” no. August 1999, pp. 148–153, 2007. | es_ES |
dc.description.references | Sullivan, G. J., Ohm, J.-R., Han, W.-J., & Wiegand, T. (2012). Overview of the High Efficiency Video Coding (HEVC) Standard. IEEE Transactions on Circuits and Systems for Video Technology, 22(12), 1649-1668. doi:10.1109/tcsvt.2012.2221191 | es_ES |
dc.description.references | Tech, G., Chen, Y., Muller, K., Ohm, J.-R., Vetro, A., & Wang, Y.-K. (2016). Overview of the Multiview and 3D Extensions of High Efficiency Video Coding. IEEE Transactions on Circuits and Systems for Video Technology, 26(1), 35-49. doi:10.1109/tcsvt.2015.2477935 | es_ES |
dc.description.references | Wang, J., Wang, S., & Wang, Z. (2017). Asymmetrically Compressed Stereoscopic 3D Videos: Quality Assessment and Rate-Distortion Performance Evaluation. IEEE Transactions on Image Processing, 26(3), 1330-1343. doi:10.1109/tip.2017.2651387 | es_ES |
dc.description.references | Battisti, F., Carli, M., Le Callet, P., & Paudyal, P. (2018). Toward the Assessment of Quality of Experience for Asymmetric Encoding in Immersive Media. IEEE Transactions on Broadcasting, 64(2), 392-406. doi:10.1109/tbc.2018.2828607 | es_ES |
dc.description.references | ITU-T, “ITU-T.P910. Subjective video quality assessment methods for multimedia applications,” 2008. | es_ES |
dc.description.references | H.K. Yarnagula, S. Luhadia, S. Datta, and V. Tamarapalli, “Quality of Experience Assessment of Rate Adaptation Algorithms in DASH : an Experimental Study,” pp. 1–8, 2016. | es_ES |
dc.description.references | Bentaleb, A., Taani, B., Begen, A. C., Timmerer, C., & Zimmermann, R. (2019). A Survey on Bitrate Adaptation Schemes for Streaming Media Over HTTP. IEEE Communications Surveys & Tutorials, 21(1), 562-585. doi:10.1109/comst.2018.2862938 | es_ES |
dc.description.references | C. Timmerer, M. Maiero, and B. Rainer, “Which Adaptation Logic ? An Objective and Subjective Performance Evaluation of HTTP-based Adaptive Media Streaming Systems.” | es_ES |
dc.description.references | Seufert, M., Egger, S., Slanina, M., Zinner, T., Hobfeld, T., & Tran-Gia, P. (2015). A Survey on Quality of Experience of HTTP Adaptive Streaming. IEEE Communications Surveys & Tutorials, 17(1), 469-492. doi:10.1109/comst.2014.2360940 | es_ES |
dc.description.references | Chen, Y., Wu, K., & Zhang, Q. (2015). From QoS to QoE: A Tutorial on Video Quality Assessment. IEEE Communications Surveys & Tutorials, 17(2), 1126-1165. doi:10.1109/comst.2014.2363139 | es_ES |
dc.description.references | Wang, Z., Bovik, A. C., Sheikh, H. R., & Simoncelli, E. P. (2004). Image Quality Assessment: From Error Visibility to Structural Similarity. IEEE Transactions on Image Processing, 13(4), 600-612. doi:10.1109/tip.2003.819861 | es_ES |
dc.description.references | Z.L. Li and A. Aaron, “Toward A Practical Perceptual Video Quality Metric,” Netflix TechBlog. | es_ES |
dc.description.references | ITU-T, “ITU-T. P915. Subjective assessment methods for 3D video quality,” 2016. | es_ES |
dc.description.references | ITU Telecommunication Standardization Sector, “ITU-T Rec P 1203 Models and tools for quality assessment of streamed media,” 2017. | es_ES |
dc.description.references | R. I.-T. J.247, “Objective perceptual multimedia video quality measurement in the presence of a full reference.,” Recomm. ITU-T J.247, 2008. | es_ES |
dc.description.references | Shaka Player Demo. [Online]. Available:https://shaka-player-demo.appspot.com. [Accessed: 01-Jun-2019]. | es_ES |
dc.description.references | Fiedler, M., Hossfeld, T., & Tran-Gia, P. (2010). A generic quantitative relationship between quality of experience and quality of service. IEEE Network, 24(2), 36-41. doi:10.1109/mnet.2010.5430142 | es_ES |
dc.description.references | Big Buck Bunny. [Online]. Available: https://peach.blender.org. [Accessed: 01-May-2019]. | es_ES |
dc.description.references | S. Lederer, C. Müller, and C. Timmerer, “Dynamic Adaptive Streaming over HTTP Dataset,” pp. 89–94, 2012. | es_ES |