- -

Some Metric and Topological Properties of Nearly Strongly and Nearly Very Convex Spaces

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Some Metric and Topological Properties of Nearly Strongly and Nearly Very Convex Spaces

Mostrar el registro completo del ítem

Zhang, Z.; Montesinos Santalucia, V.; Liu, C. (2020). Some Metric and Topological Properties of Nearly Strongly and Nearly Very Convex Spaces. Acta Mathematica Scientia. 40(2):369-378. https://doi.org/10.1007/s10473-020-0205-7

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/166261

Ficheros en el ítem

Metadatos del ítem

Título: Some Metric and Topological Properties of Nearly Strongly and Nearly Very Convex Spaces
Autor: Zhang, Zihou Montesinos Santalucia, Vicente Liu, Chunyan
Entidad UPV: Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada
Fecha difusión:
Resumen:
[EN] We obtain characterizations of nearly strong convexity and nearly very convexity by using the dual concept of S and WS points, related to the so-called Rolewicz's property (alpha). We give a characterization of those ...[+]
Palabras clave: Banach spaces , Nearly strongly convex spaces , Nearly very convex spaces , Kadec property , Radon-Riesz property , Approximative compactness
Derechos de uso: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Fuente:
Acta Mathematica Scientia. (issn: 0252-9602 )
DOI: 10.1007/s10473-020-0205-7
Editorial:
Elsevier
Versión del editor: https://doi.org/10.1007/s10473-020-0205-7
Código del Proyecto:
info:eu-repo/grantAgreement/MINECO//MTM2014-57838-C2-2-P/ES/ANALISIS COMPLEJO EN DIMENSION FINITA E INFINITA. GEOMETRIA DE ESPACIOS DE BANACH/
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/MTM2017-83262-C2-1-P/ES/ANALISIS COMPLEJO Y GEOMETRIA EN ESPACIOS DE BANACH/
info:eu-repo/grantAgreement/NSFC//11671252/
info:eu-repo/grantAgreement/NSFC//11771248/
Agradecimientos:
The first named author was supported in part by the National Natural Science Foundation of China (11671252, 11771248); The second named author is supported by Proyecto MTM2014-57838-C2-2-P (Spain) and the Universitat ...[+]
Tipo: Artículo

References

Bandyopadhyay P, Li Y J, Lin B L, Narayana D. Proximinality in Banach space. J Math Anal Appl, 2008, 341: 309–317

Diestel J. Sequences and Series in Banach Spaces. GTM 92. Springer, 1984

Szymon Draga. On weakly uniformly rotund norms which are not locally uniformly rotund. Colloquium Mathematicum, 2015, 138(2): 241–246 [+]
Bandyopadhyay P, Li Y J, Lin B L, Narayana D. Proximinality in Banach space. J Math Anal Appl, 2008, 341: 309–317

Diestel J. Sequences and Series in Banach Spaces. GTM 92. Springer, 1984

Szymon Draga. On weakly uniformly rotund norms which are not locally uniformly rotund. Colloquium Mathematicum, 2015, 138(2): 241–246

Efimov N W, Stechkin S B. Approximate compactness and Chebyshev sets. Sorit Mathematics, 1961, 2: 1226–1228

Fabian M, Habala P, Hájek P, Montesinos V, Zizler V. Banach Space Theory; The Basis for Linear and NonLinear Analysis. Springer, 2011

Fang X N, Wang J H. Convexity and Continuity of the metric projection. Math Appl, 2001, 14(1): 47–51 (in Chinesse)

Giles J R, Gregory D A, Sims B. Geometrical implications of upper semi-continuity of the duality mapping on Banach space. Pacific J Math, 1978, 79(1): 99–109

Guirao A J, Montesinos V. A note in approximative compactness and continuity of the metric projection in Banach spaces. J Convex Anal, 2011, 18: 341–397

Hájek P, Montesinos V, Zizler V. Geometry and Gâteaux smoothness in separable Banach spaces. Operators and Matrices, 2012, 6(2): 201–232

Hudzik H, Kowalewski W, Lewicki G. Approximative compactness and full rotundity in Musielak-Orlicz space and Lorentz-Orlice spaces. Z Anal Anwen Aungen, 2006, 25: 163–192

Molto A, Orihuela J, Troyanski S, Valdivia M. A Nonlinear Transfer Technique for Renorming//Lecture Notes in Math 1951. Berlin: Springer, 2009

Montesinos V. Drop property equals reflexivity. Studia Mathm, 1987, 87(1): 93–100

Wang J H, Zhang Z H. Characterization of the property (C - κ). Acta Math Sci Ser A Chinese Ed, 1997, 17A(3): 280–284

Zhang Z H, Liu C Y. Convexity and existence of the farthest point. Abstract and Applied Analysis 2011. Article ID 139597. Doi:10.1155/2011/139597, 2011

Zhang Z H, Liu C Y. Convexity and proximinality in Banach space. J Funct Spaces Appl Art, ID 724120, 2012

Zhang Z H, Montesinos V, Liu C Y, Gong W Z. Geometric properties and continuity of pre-duality mapping in Banach spaces. Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales Serie A, Matemáticas, 2015, 109(2): 407–416

Zhang Z H, Shi Z R. Convexities and approximative compactness and continuity of metric projection in Banach spaces. J Approx Theory, 2009, 2(161): 800–812

Zhang Z H, Zhou Y, Liu C Y. Near convexity, near smoothness and approximative compactness of half space in Banach space. Acta Math Sinica (Engl Ser), 2016, 32(5): 599–606

Liu C Y, Zhang Z H, Zhou Y. A note approximative compactness and midpoint locally K-uniform rotundity in Banach spaces. Acta Mathematica Scientia, 2018, 38B(2): 643–650

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem