- -

Preparation and Characterization of Electrospun Pectin-Based Films and Their Application in Sustainable Aroma Barrier Multilayer Packaging

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Preparation and Characterization of Electrospun Pectin-Based Films and Their Application in Sustainable Aroma Barrier Multilayer Packaging

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Balik, Busra Akinalan es_ES
dc.contributor.author Argin, Sanem es_ES
dc.contributor.author Lagaron, Jose M. es_ES
dc.contributor.author Torres-Giner, S. es_ES
dc.date.accessioned 2021-05-13T03:32:18Z
dc.date.available 2021-05-13T03:32:18Z
dc.date.issued 2019-11-27 es_ES
dc.identifier.uri http://hdl.handle.net/10251/166267
dc.description.abstract [EN] Featured Application: The present study aims to develop novel pectin-based films by electrospinning. The here -prepared films were applied as aroma barrier interlayers between two biopolymer films to develop fully bio-based and biodegradable food packaging articles according to the principles of the Circular Economy. Pectin was first dissolved in distilled water and blended with low contents of polyethylene oxide 2000 (PEO2000) as the carrier polymer to produce electrospun fibers. The electrospinning of the water solution of pectin at 9.5 wt% containing 0.5 wt% PEO2000 was selected as it successfully resulted in continuous and non-defected ultrathin fibers with the highest pectin content. However, annealing of the resultant pectin-based fibers, tested at different conditions, developed films with low mechanical integrity, high porosity, and also dark color due to their poor thermal stability. Then, to improve the film-forming process of the electrospun mats, two plasticizers, namely glycerol and polyethylene glycol 900 (PEG(900)), were added to the selected pectin solution in the 2-3 wt% range. The optimal annealing conditions were found at 150 degrees C with a pressure of 12 kN load for 1 min when applied to the electrospun pectin mats containing 5 wt% PEO2000 and 30 wt% glycerol and washed previously with dichloromethane. This process led to completely homogenous films with low porosity and high transparency due to a phenomenon of fibers coalescence. Finally, the selected electrospun pectin-based film was applied as an interlayer between two external layers of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) by the electrospinning coating technology and the whole structure was annealed to produce a fully bio-based and biodegradable multilayer film with enhanced barrier performance to water vapor and limonene. es_ES
dc.description.sponsorship This study was supported by the Turkish Scientific and Technological Research Council (TUBITAK) 2214-A International Research Fellowship Programme for PhD Students and by the Spanish Ministry of Science, Innovation, and Universities (MICIU) project numbers AGL2015-63855-C2-1-R. S.T.-G. is a recipient of a Juan de la Cierva¿Incorporación contract (IJCI-2016-29675) from MICIU. es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Applied Sciences es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Pectin es_ES
dc.subject Electrospinning es_ES
dc.subject Annealing es_ES
dc.subject Barrier interlayers es_ES
dc.subject Food packaging es_ES
dc.subject.classification CIENCIA DE LOS MATERIALES E INGENIERIA METALURGICA es_ES
dc.title Preparation and Characterization of Electrospun Pectin-Based Films and Their Application in Sustainable Aroma Barrier Multilayer Packaging es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/app9235136 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//IJCI-2016-29675/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//AGL2015-63855-C2-1-R/ES/DESARROLLO DE UN CONCEPTO DE ENVASE MULTICAPA ALIMENTARIO DE ALTA BARRERA Y CON CARACTER ACTIVO Y BIOACTIVO DERIVADO DE SUBPRODUCTOS ALIMENTARIOS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/TUBITAK//2214-A/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Ingeniería de Alimentos para el Desarrollo - Institut Universitari d'Enginyeria d'Aliments per al Desenvolupament es_ES
dc.description.bibliographicCitation Balik, BA.; Argin, S.; Lagaron, JM.; Torres-Giner, S. (2019). Preparation and Characterization of Electrospun Pectin-Based Films and Their Application in Sustainable Aroma Barrier Multilayer Packaging. Applied Sciences. 9(23):1-24. https://doi.org/10.3390/app9235136 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/app9235136 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 24 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 9 es_ES
dc.description.issue 23 es_ES
dc.identifier.eissn 2076-3417 es_ES
dc.relation.pasarela S\427474 es_ES
dc.contributor.funder Technological Research Council of Turkey es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Ridley, B. L., O’Neill, M. A., & Mohnen, D. (2001). Pectins: structure, biosynthesis, and oligogalacturonide-related signaling. Phytochemistry, 57(6), 929-967. doi:10.1016/s0031-9422(01)00113-3 es_ES
dc.description.references Mukhiddinov, Z. (2000). Isolation and structural characterization of a pectin homo and ramnogalacturonan. Talanta, 53(1), 171-176. doi:10.1016/s0039-9140(00)00456-2 es_ES
dc.description.references MOHNEN, D. (2008). Pectin structure and biosynthesis. Current Opinion in Plant Biology, 11(3), 266-277. doi:10.1016/j.pbi.2008.03.006 es_ES
dc.description.references Naqash, F., Masoodi, F. A., Rather, S. A., Wani, S. M., & Gani, A. (2017). Emerging concepts in the nutraceutical and functional properties of pectin—A Review. Carbohydrate Polymers, 168, 227-239. doi:10.1016/j.carbpol.2017.03.058 es_ES
dc.description.references Noreen, A., Nazli, Z.-H., Akram, J., Rasul, I., Mansha, A., Yaqoob, N., … Zia, K. M. (2017). Pectins functionalized biomaterials; a new viable approach for biomedical applications: A review. International Journal of Biological Macromolecules, 101, 254-272. doi:10.1016/j.ijbiomac.2017.03.029 es_ES
dc.description.references Bernhardt, D. C., Pérez, C. D., Fissore, E. N., De’Nobili, M. D., & Rojas, A. M. (2017). Pectin-based composite film: Effect of corn husk fiber concentration on their properties. Carbohydrate Polymers, 164, 13-22. doi:10.1016/j.carbpol.2017.01.031 es_ES
dc.description.references Yu, W.-X., Wang, Z.-W., Hu, C.-Y., & Wang, L. (2014). Properties of low methoxyl pectin-carboxymethyl cellulose based on montmorillonite nanocomposite films. International Journal of Food Science & Technology, 49(12), 2592-2601. doi:10.1111/ijfs.12590 es_ES
dc.description.references Silva, M. A. da, Bierhalz, A. C. K., & Kieckbusch, T. G. (2009). Alginate and pectin composite films crosslinked with Ca2+ ions: Effect of the plasticizer concentration. Carbohydrate Polymers, 77(4), 736-742. doi:10.1016/j.carbpol.2009.02.014 es_ES
dc.description.references Jantrawut, P., Chaiwarit, T., Jantanasakulwong, K., Brachais, C., & Chambin, O. (2017). Effect of Plasticizer Type on Tensile Property and In Vitro Indomethacin Release of Thin Films Based on Low-Methoxyl Pectin. Polymers, 9(12), 289. doi:10.3390/polym9070289 es_ES
dc.description.references Chaiwarit, T., Ruksiriwanich, W., Jantanasakulwong, K., & Jantrawut, P. (2018). Use of Orange Oil Loaded Pectin Films as Antibacterial Material for Food Packaging. Polymers, 10(10), 1144. doi:10.3390/polym10101144 es_ES
dc.description.references Ma, X., Chang, P. R., Yu, J., & Stumborg, M. (2009). Properties of biodegradable citric acid-modified granular starch/thermoplastic pea starch composites. Carbohydrate Polymers, 75(1), 1-8. doi:10.1016/j.carbpol.2008.05.020 es_ES
dc.description.references ARGIN, S., & GÜLERİM, M. (2019). Development of antimicrobial gelatin films with boron derivatives. TURKISH JOURNAL OF BIOLOGY, 43(1), 47-57. doi:10.3906/biy-1807-181 es_ES
dc.description.references Kowalczyk, D., & Baraniak, B. (2011). Effects of plasticizers, pH and heating of film-forming solution on the properties of pea protein isolate films. Journal of Food Engineering, 105(2), 295-305. doi:10.1016/j.jfoodeng.2011.02.037 es_ES
dc.description.references Kowalczyk, D., Gustaw, W., Świeca, M., & Baraniak, B. (2013). A Study on the Mechanical Properties of Pea Protein Isolate Films. Journal of Food Processing and Preservation, 38(4), 1726-1736. doi:10.1111/jfpp.12135 es_ES
dc.description.references Talja, R. A., Helén, H., Roos, Y. H., & Jouppila, K. (2007). Effect of various polyols and polyol contents on physical and mechanical properties of potato starch-based films. Carbohydrate Polymers, 67(3), 288-295. doi:10.1016/j.carbpol.2006.05.019 es_ES
dc.description.references Vieira, M. G. A., da Silva, M. A., dos Santos, L. O., & Beppu, M. M. (2011). Natural-based plasticizers and biopolymer films: A review. European Polymer Journal, 47(3), 254-263. doi:10.1016/j.eurpolymj.2010.12.011 es_ES
dc.description.references Sanyang, M. L., Sapuan, S. M., Jawaid, M., Ishak, M. R., & Sahari, J. (2015). Effect of plasticizer type and concentration on physical properties of biodegradable films based on sugar palm (arenga pinnata) starch for food packaging. Journal of Food Science and Technology, 53(1), 326-336. doi:10.1007/s13197-015-2009-7 es_ES
dc.description.references Pavlath, A. E., Voisin, A., & Robertson, G. H. (1999). Pectin-based biodegradable water insoluble films. Macromolecular Symposia, 140(1), 107-113. doi:10.1002/masy.19991400112 es_ES
dc.description.references Penhasi, A., & Meidan, V. M. (2014). Preparation and characterization of in situ ionic cross-linked pectin films: Unique biodegradable polymers. Carbohydrate Polymers, 102, 254-260. doi:10.1016/j.carbpol.2013.11.042 es_ES
dc.description.references Lorevice, M. V., Otoni, C. G., Moura, M. R. de, & Mattoso, L. H. C. (2016). Chitosan nanoparticles on the improvement of thermal, barrier, and mechanical properties of high- and low-methyl pectin films. Food Hydrocolloids, 52, 732-740. doi:10.1016/j.foodhyd.2015.08.003 es_ES
dc.description.references Martelli, M. R., Barros, T. T., de Moura, M. R., Mattoso, L. H. C., & Assis, O. B. G. (2012). Effect of Chitosan Nanoparticles and Pectin Content on Mechanical Properties and Water Vapor Permeability of Banana Puree Films. Journal of Food Science, 78(1), N98-N104. doi:10.1111/j.1750-3841.2012.03006.x es_ES
dc.description.references Chaichi, M., Hashemi, M., Badii, F., & Mohammadi, A. (2017). Preparation and characterization of a novel bionanocomposite edible film based on pectin and crystalline nanocellulose. Carbohydrate Polymers, 157, 167-175. doi:10.1016/j.carbpol.2016.09.062 es_ES
dc.description.references Šešlija, S., Nešić, A., Škorić, M. L., Krušić, M. K., Santagata, G., & Malinconico, M. (2018). Pectin/Carboxymethylcellulose Films as a Potential Food Packaging Material. Macromolecular Symposia, 378(1), 1600163. doi:10.1002/masy.201600163 es_ES
dc.description.references Pasini Cabello, S. D., Takara, E. A., Marchese, J., & Ochoa, N. A. (2015). Influence of plasticizers in pectin films: Microstructural changes. Materials Chemistry and Physics, 162, 491-497. doi:10.1016/j.matchemphys.2015.06.019 es_ES
dc.description.references Espitia, P. J. P., Du, W.-X., Avena-Bustillos, R. de J., Soares, N. de F. F., & McHugh, T. H. (2014). Edible films from pectin: Physical-mechanical and antimicrobial properties - A review. Food Hydrocolloids, 35, 287-296. doi:10.1016/j.foodhyd.2013.06.005 es_ES
dc.description.references Bhardwaj, N., & Kundu, S. C. (2010). Electrospinning: A fascinating fiber fabrication technique. Biotechnology Advances, 28(3), 325-347. doi:10.1016/j.biotechadv.2010.01.004 es_ES
dc.description.references Torres-Giner, S., Wilkanowicz, S., Melendez-Rodriguez, B., & Lagaron, J. M. (2017). Nanoencapsulation of Aloe vera in Synthetic and Naturally Occurring Polymers by Electrohydrodynamic Processing of Interest in Food Technology and Bioactive Packaging. Journal of Agricultural and Food Chemistry, 65(22), 4439-4448. doi:10.1021/acs.jafc.7b01393 es_ES
dc.description.references Torres-Giner, S., Pérez-Masiá, R., & Lagaron, J. M. (2016). A review on electrospun polymer nanostructures as advanced bioactive platforms. Polymer Engineering & Science, 56(5), 500-527. doi:10.1002/pen.24274 es_ES
dc.description.references Frenot, A., & Chronakis, I. S. (2003). Polymer nanofibers assembled by electrospinning. Current Opinion in Colloid & Interface Science, 8(1), 64-75. doi:10.1016/s1359-0294(03)00004-9 es_ES
dc.description.references Kim, J., & Reneker, D. H. (1999). Mechanical properties of composites using ultrafine electrospun fibers. Polymer Composites, 20(1), 124-131. doi:10.1002/pc.10340 es_ES
dc.description.references Furlan, R., Rosado, J. A. M., Rodriguez, G. G., Fachini, E. R., da Silva, A. N. R., & da Silva, M. L. P. (2012). Formation and Characterization of Oriented Micro- and Nanofibers Containing Poly (ethylene oxide) and Pectin. Journal of The Electrochemical Society, 159(3), K66-K71. doi:10.1149/2.057203jes es_ES
dc.description.references Liu, S.-C., Li, R., Tomasula, P. M., Sousa, A. M. M., & Liu, L. (2016). Electrospun Food-Grade Ultrafine Fibers from Pectin and Pullulan Blends. Food and Nutrition Sciences, 07(07), 636-646. doi:10.4236/fns.2016.77065 es_ES
dc.description.references Cui, S., Yao, B., Sun, X., Hu, J., Zhou, Y., & Liu, Y. (2016). Reducing the content of carrier polymer in pectin nanofibers by electrospinning at low loading followed with selective washing. Materials Science and Engineering: C, 59, 885-893. doi:10.1016/j.msec.2015.10.086 es_ES
dc.description.references Cui, S.-S., Sun, X., Yao, B., Peng, X.-X., Zhang, X.-T., Zhou, Y.-F., … Liu, Y.-C. (2017). Size-Tunable Low Molecular Weight Pectin-Based Electrospun Nanofibers Blended with Low Content of Poly(ethylene oxide). Journal of Nanoscience and Nanotechnology, 17(1), 681-689. doi:10.1166/jnn.2017.12540 es_ES
dc.description.references McCune, D., Guo, X., Shi, T., Stealey, S., Antrobus, R., Kaltchev, M., … Zhang, W. (2018). Electrospinning pectin-based nanofibers: a parametric and cross-linker study. Applied Nanoscience, 8(1-2), 33-40. doi:10.1007/s13204-018-0649-4 es_ES
dc.description.references Chen, S., Cui, S., Zhang, H., Pei, X., Hu, J., Zhou, Y., & Liu, Y. (2018). Cross-Linked Pectin Nanofibers with Enhanced Cell Adhesion. Biomacromolecules, 19(2), 490-498. doi:10.1021/acs.biomac.7b01605 es_ES
dc.description.references Li, K., Cui, S., Hu, J., Zhou, Y., & Liu, Y. (2018). Crosslinked pectin nanofibers with well-dispersed Ag nanoparticles: Preparation and characterization. Carbohydrate Polymers, 199, 68-74. doi:10.1016/j.carbpol.2018.07.013 es_ES
dc.description.references Rockwell, P. L., Kiechel, M. A., Atchison, J. S., Toth, L. J., & Schauer, C. L. (2014). Various-sourced pectin and polyethylene oxide electrospun fibers. Carbohydrate Polymers, 107, 110-118. doi:10.1016/j.carbpol.2014.02.026 es_ES
dc.description.references Akinalan Balik, B., & Argin, S. (2019). Role of rheology on the formation of Nanofibers from pectin and polyethylene oxide blends. Journal of Applied Polymer Science, 137(3), 48294. doi:10.1002/app.48294 es_ES
dc.description.references Alborzi, S., Lim, L.-T., & Kakuda, Y. (2010). Electrospinning of Sodium Alginate-Pectin Ultrafine Fibers. Journal of Food Science, 75(1), C100-C107. doi:10.1111/j.1750-3841.2009.01437.x es_ES
dc.description.references Cherpinski, A., Torres-Giner, S., Cabedo, L., & Lagaron, J. M. (2017). Post-processing optimization of electrospun submicron poly(3-hydroxybutyrate) fibers to obtain continuous films of interest in food packaging applications. Food Additives & Contaminants: Part A, 34(10), 1817-1830. doi:10.1080/19440049.2017.1355115 es_ES
dc.description.references Cherpinski, A., Torres-Giner, S., Vartiainen, J., Peresin, M. S., Lahtinen, P., & Lagaron, J. M. (2018). Improving the water resistance of nanocellulose-based films with polyhydroxyalkanoates processed by the electrospinning coating technique. Cellulose, 25(2), 1291-1307. doi:10.1007/s10570-018-1648-z es_ES
dc.description.references Melendez-Rodriguez, B., Castro-Mayorga, J. L., Reis, M. A. M., Sammon, C., Cabedo, L., Torres-Giner, S., & Lagaron, J. M. (2018). Preparation and Characterization of Electrospun Food Biopackaging Films of Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) Derived From Fruit Pulp Biowaste. Frontiers in Sustainable Food Systems, 2. doi:10.3389/fsufs.2018.00038 es_ES
dc.description.references Melendez-Rodriguez, B., Figueroa-Lopez, K. J., Bernardos, A., Martínez-Máñez, R., Cabedo, L., Torres-Giner, S., & Lagaron, J. M. (2019). Electrospun Antimicrobial Films of Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) Containing Eugenol Essential Oil Encapsulated in Mesoporous Silica Nanoparticles. Nanomaterials, 9(2), 227. doi:10.3390/nano9020227 es_ES
dc.description.references Figueroa-Lopez, K. J., Vicente, A. A., Reis, M. A. M., Torres-Giner, S., & Lagaron, J. M. (2019). Antimicrobial and Antioxidant Performance of Various Essential Oils and Natural Extracts and Their Incorporation into Biowaste Derived Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) Layers Made from Electrospun Ultrathin Fibers. Nanomaterials, 9(2), 144. doi:10.3390/nano9020144 es_ES
dc.description.references Quiles-Carrillo, L., Montanes, N., Lagaron, J., Balart, R., & Torres-Giner, S. (2019). Bioactive Multilayer Polylactide Films with Controlled Release Capacity of Gallic Acid Accomplished by Incorporating Electrospun Nanostructured Coatings and Interlayers. Applied Sciences, 9(3), 533. doi:10.3390/app9030533 es_ES
dc.description.references Agüero, A., Morcillo, M. del C., Quiles-Carrillo, L., Balart, R., Boronat, T., Lascano, D., … Fenollar, O. (2019). Study of the Influence of the Reprocessing Cycles on the Final Properties of Polylactide Pieces Obtained by Injection Molding. Polymers, 11(12), 1908. doi:10.3390/polym11121908 es_ES
dc.description.references Ralet, M.-C., Crépeau, M.-J., Buchholt, H.-C., & Thibault, J.-F. (2003). Polyelectrolyte behaviour and calcium binding properties of sugar beet pectins differing in their degrees of methylation and acetylation. Biochemical Engineering Journal, 16(2), 191-201. doi:10.1016/s1369-703x(03)00037-8 es_ES
dc.description.references Bizarria, M. T. M., d’ Ávila, M. A., & Mei, L. H. I. (2014). Non-woven nanofiber chitosan/peo membranes obtained by electrospinning. Brazilian Journal of Chemical Engineering, 31(1), 57-68. doi:10.1590/s0104-66322014000100007 es_ES
dc.description.references Einhorn-Stoll, U., Kunzek, H., & Dongowski, G. (2007). Thermal analysis of chemically and mechanically modified pectins. Food Hydrocolloids, 21(7), 1101-1112. doi:10.1016/j.foodhyd.2006.08.004 es_ES
dc.description.references Godeck, R., Kunzek, H., & Kabbert, R. (2001). Thermal analysis of plant cell wall materials depending on the chemical structure and pre-treatment prior to drying. European Food Research and Technology, 213(4-5), 395-404. doi:10.1007/s002170100388 es_ES
dc.description.references Kastner, H., Einhorn-Stoll, U., & Senge, B. (2012). Structure formation in sugar containing pectin gels – Influence of Ca2+ on the gelation of low-methoxylated pectin at acidic pH. Food Hydrocolloids, 27(1), 42-49. doi:10.1016/j.foodhyd.2011.09.001 es_ES
dc.description.references Nisar, T., Wang, Z.-C., Yang, X., Tian, Y., Iqbal, M., & Guo, Y. (2018). Characterization of citrus pectin films integrated with clove bud essential oil: Physical, thermal, barrier, antioxidant and antibacterial properties. International Journal of Biological Macromolecules, 106, 670-680. doi:10.1016/j.ijbiomac.2017.08.068 es_ES
dc.description.references BUREN, J. P. (1979). THE CHEMISTRY OF TEXTURE IN FRUITS AND VEGETABLES. Journal of Texture Studies, 10(1), 1-23. doi:10.1111/j.1745-4603.1979.tb01305.x es_ES
dc.description.references Sila, D. N., Smout, C., Elliot, F., Loey, A. V., & Hendrickx, M. (2006). Non-enzymatic Depolymerization of Carrot Pectin: Toward a Better Understanding of Carrot Texture During Thermal Processing. Journal of Food Science, 71(1), E1-E9. doi:10.1111/j.1365-2621.2006.tb12391.x es_ES
dc.description.references Diaz, J. V., Anthon, G. E., & Barrett, D. M. (2007). Nonenzymatic Degradation of Citrus Pectin and Pectate during Prolonged Heating:  Effects of pH, Temperature, and Degree of Methyl Esterification. Journal of Agricultural and Food Chemistry, 55(13), 5131-5136. doi:10.1021/jf0701483 es_ES
dc.description.references Krall, S. M., & McFeeters, R. F. (1998). Pectin Hydrolysis:  Effect of Temperature, Degree of Methylation, pH, and Calcium on Hydrolysis Rates. Journal of Agricultural and Food Chemistry, 46(4), 1311-1315. doi:10.1021/jf970473y es_ES
dc.description.references Rodrigo, D., Cortés, C., Clynen, E., Schoofs, L., Loey, A. V., & Hendrickx, M. (2006). Thermal and high-pressure stability of purified polygalacturonase and pectinmethylesterase from four different tomato processing varieties. Food Research International, 39(4), 440-448. doi:10.1016/j.foodres.2005.09.007 es_ES
dc.description.references Aburto, J., Moran, M., Galano, A., & Torres-García, E. (2015). Non-isothermal pyrolysis of pectin: A thermochemical and kinetic approach. Journal of Analytical and Applied Pyrolysis, 112, 94-104. doi:10.1016/j.jaap.2015.02.012 es_ES
dc.description.references Dick, M., Costa, T. M. H., Gomaa, A., Subirade, M., Rios, A. de O., & Flôres, S. H. (2015). Edible film production from chia seed mucilage: Effect of glycerol concentration on its physicochemical and mechanical properties. Carbohydrate Polymers, 130, 198-205. doi:10.1016/j.carbpol.2015.05.040 es_ES
dc.description.references Mishra, R. K., Anis, A., Mondal, S., Dutt, M., & Banthia, A. K. (2009). REPARATION AND CHARACTERIZATION OF AMIDATED PECTIN BASED POLYMER ELECTROLYTE MEMBRANES. Chinese Journal of Polymer Science, 27(05), 639. doi:10.1142/s0256767909004333 es_ES
dc.description.references Villanova, J. C. O., Ayres, E., & Oréfice, R. L. (2015). Design, characterization and preliminary in vitro evaluation of a mucoadhesive polymer based on modified pectin and acrylic monomers with potential use as a pharmaceutical excipient. Carbohydrate Polymers, 121, 372-381. doi:10.1016/j.carbpol.2014.12.052 es_ES
dc.description.references Basiak, E., Lenart, A., & Debeaufort, F. (2018). How Glycerol and Water Contents Affect the Structural and Functional Properties of Starch-Based Edible Films. Polymers, 10(4), 412. doi:10.3390/polym10040412 es_ES
dc.description.references Gondaliya, N., Kanchan, D. K., Sharma, P., & Joge, P. (2011). Structural and Conductivity Studies of Poly(Ethylene Oxide) – Silver Triflate Polymer Electrolyte System. Materials Sciences and Applications, 02(11), 1639-1643. doi:10.4236/msa.2011.211218 es_ES
dc.description.references Sanchez-Garcia, M. D., Gimenez, E., & Lagaron, J. M. (2008). Morphology and barrier properties of solvent cast composites of thermoplastic biopolymers and purified cellulose fibers. Carbohydrate Polymers, 71(2), 235-244. doi:10.1016/j.carbpol.2007.05.041 es_ES
dc.description.references Fabra, M. J., Lopez-Rubio, A., & Lagaron, J. M. (2014). Nanostructured interlayers of zein to improve the barrier properties of high barrier polyhydroxyalkanoates and other polyesters. Journal of Food Engineering, 127, 1-9. doi:10.1016/j.jfoodeng.2013.11.022 es_ES
dc.subject.ods 12.- Garantizar las pautas de consumo y de producción sostenibles es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem