- -

Preparation and Characterization of Electrospun Pectin-Based Films and Their Application in Sustainable Aroma Barrier Multilayer Packaging

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Preparation and Characterization of Electrospun Pectin-Based Films and Their Application in Sustainable Aroma Barrier Multilayer Packaging

Mostrar el registro completo del ítem

Balik, BA.; Argin, S.; Lagaron, JM.; Torres-Giner, S. (2019). Preparation and Characterization of Electrospun Pectin-Based Films and Their Application in Sustainable Aroma Barrier Multilayer Packaging. Applied Sciences. 9(23):1-24. https://doi.org/10.3390/app9235136

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/166267

Ficheros en el ítem

Metadatos del ítem

Título: Preparation and Characterization of Electrospun Pectin-Based Films and Their Application in Sustainable Aroma Barrier Multilayer Packaging
Autor: Balik, Busra Akinalan Argin, Sanem Lagaron, Jose M. Torres-Giner, S.
Entidad UPV: Universitat Politècnica de València. Instituto Universitario de Ingeniería de Alimentos para el Desarrollo - Institut Universitari d'Enginyeria d'Aliments per al Desenvolupament
Fecha difusión:
Resumen:
[EN] Featured Application: The present study aims to develop novel pectin-based films by electrospinning. The here -prepared films were applied as aroma barrier interlayers between two biopolymer films to develop fully ...[+]
Palabras clave: Pectin , Electrospinning , Annealing , Barrier interlayers , Food packaging
Derechos de uso: Reconocimiento (by)
Fuente:
Applied Sciences. (eissn: 2076-3417 )
DOI: 10.3390/app9235136
Editorial:
MDPI AG
Versión del editor: https://doi.org/10.3390/app9235136
Código del Proyecto:
info:eu-repo/grantAgreement/MINECO//IJCI-2016-29675/
info:eu-repo/grantAgreement/MINECO//AGL2015-63855-C2-1-R/ES/DESARROLLO DE UN CONCEPTO DE ENVASE MULTICAPA ALIMENTARIO DE ALTA BARRERA Y CON CARACTER ACTIVO Y BIOACTIVO DERIVADO DE SUBPRODUCTOS ALIMENTARIOS/
info:eu-repo/grantAgreement/TUBITAK//2214-A/
Agradecimientos:
This study was supported by the Turkish Scientific and Technological Research Council (TUBITAK) 2214-A International Research Fellowship Programme for PhD Students and by the Spanish Ministry of Science, Innovation, and ...[+]
Tipo: Artículo

References

Ridley, B. L., O’Neill, M. A., & Mohnen, D. (2001). Pectins: structure, biosynthesis, and oligogalacturonide-related signaling. Phytochemistry, 57(6), 929-967. doi:10.1016/s0031-9422(01)00113-3

Mukhiddinov, Z. (2000). Isolation and structural characterization of a pectin homo and ramnogalacturonan. Talanta, 53(1), 171-176. doi:10.1016/s0039-9140(00)00456-2

MOHNEN, D. (2008). Pectin structure and biosynthesis. Current Opinion in Plant Biology, 11(3), 266-277. doi:10.1016/j.pbi.2008.03.006 [+]
Ridley, B. L., O’Neill, M. A., & Mohnen, D. (2001). Pectins: structure, biosynthesis, and oligogalacturonide-related signaling. Phytochemistry, 57(6), 929-967. doi:10.1016/s0031-9422(01)00113-3

Mukhiddinov, Z. (2000). Isolation and structural characterization of a pectin homo and ramnogalacturonan. Talanta, 53(1), 171-176. doi:10.1016/s0039-9140(00)00456-2

MOHNEN, D. (2008). Pectin structure and biosynthesis. Current Opinion in Plant Biology, 11(3), 266-277. doi:10.1016/j.pbi.2008.03.006

Naqash, F., Masoodi, F. A., Rather, S. A., Wani, S. M., & Gani, A. (2017). Emerging concepts in the nutraceutical and functional properties of pectin—A Review. Carbohydrate Polymers, 168, 227-239. doi:10.1016/j.carbpol.2017.03.058

Noreen, A., Nazli, Z.-H., Akram, J., Rasul, I., Mansha, A., Yaqoob, N., … Zia, K. M. (2017). Pectins functionalized biomaterials; a new viable approach for biomedical applications: A review. International Journal of Biological Macromolecules, 101, 254-272. doi:10.1016/j.ijbiomac.2017.03.029

Bernhardt, D. C., Pérez, C. D., Fissore, E. N., De’Nobili, M. D., & Rojas, A. M. (2017). Pectin-based composite film: Effect of corn husk fiber concentration on their properties. Carbohydrate Polymers, 164, 13-22. doi:10.1016/j.carbpol.2017.01.031

Yu, W.-X., Wang, Z.-W., Hu, C.-Y., & Wang, L. (2014). Properties of low methoxyl pectin-carboxymethyl cellulose based on montmorillonite nanocomposite films. International Journal of Food Science & Technology, 49(12), 2592-2601. doi:10.1111/ijfs.12590

Silva, M. A. da, Bierhalz, A. C. K., & Kieckbusch, T. G. (2009). Alginate and pectin composite films crosslinked with Ca2+ ions: Effect of the plasticizer concentration. Carbohydrate Polymers, 77(4), 736-742. doi:10.1016/j.carbpol.2009.02.014

Jantrawut, P., Chaiwarit, T., Jantanasakulwong, K., Brachais, C., & Chambin, O. (2017). Effect of Plasticizer Type on Tensile Property and In Vitro Indomethacin Release of Thin Films Based on Low-Methoxyl Pectin. Polymers, 9(12), 289. doi:10.3390/polym9070289

Chaiwarit, T., Ruksiriwanich, W., Jantanasakulwong, K., & Jantrawut, P. (2018). Use of Orange Oil Loaded Pectin Films as Antibacterial Material for Food Packaging. Polymers, 10(10), 1144. doi:10.3390/polym10101144

Ma, X., Chang, P. R., Yu, J., & Stumborg, M. (2009). Properties of biodegradable citric acid-modified granular starch/thermoplastic pea starch composites. Carbohydrate Polymers, 75(1), 1-8. doi:10.1016/j.carbpol.2008.05.020

ARGIN, S., & GÜLERİM, M. (2019). Development of antimicrobial gelatin films with boron derivatives. TURKISH JOURNAL OF BIOLOGY, 43(1), 47-57. doi:10.3906/biy-1807-181

Kowalczyk, D., & Baraniak, B. (2011). Effects of plasticizers, pH and heating of film-forming solution on the properties of pea protein isolate films. Journal of Food Engineering, 105(2), 295-305. doi:10.1016/j.jfoodeng.2011.02.037

Kowalczyk, D., Gustaw, W., Świeca, M., & Baraniak, B. (2013). A Study on the Mechanical Properties of Pea Protein Isolate Films. Journal of Food Processing and Preservation, 38(4), 1726-1736. doi:10.1111/jfpp.12135

Talja, R. A., Helén, H., Roos, Y. H., & Jouppila, K. (2007). Effect of various polyols and polyol contents on physical and mechanical properties of potato starch-based films. Carbohydrate Polymers, 67(3), 288-295. doi:10.1016/j.carbpol.2006.05.019

Vieira, M. G. A., da Silva, M. A., dos Santos, L. O., & Beppu, M. M. (2011). Natural-based plasticizers and biopolymer films: A review. European Polymer Journal, 47(3), 254-263. doi:10.1016/j.eurpolymj.2010.12.011

Sanyang, M. L., Sapuan, S. M., Jawaid, M., Ishak, M. R., & Sahari, J. (2015). Effect of plasticizer type and concentration on physical properties of biodegradable films based on sugar palm (arenga pinnata) starch for food packaging. Journal of Food Science and Technology, 53(1), 326-336. doi:10.1007/s13197-015-2009-7

Pavlath, A. E., Voisin, A., & Robertson, G. H. (1999). Pectin-based biodegradable water insoluble films. Macromolecular Symposia, 140(1), 107-113. doi:10.1002/masy.19991400112

Penhasi, A., & Meidan, V. M. (2014). Preparation and characterization of in situ ionic cross-linked pectin films: Unique biodegradable polymers. Carbohydrate Polymers, 102, 254-260. doi:10.1016/j.carbpol.2013.11.042

Lorevice, M. V., Otoni, C. G., Moura, M. R. de, & Mattoso, L. H. C. (2016). Chitosan nanoparticles on the improvement of thermal, barrier, and mechanical properties of high- and low-methyl pectin films. Food Hydrocolloids, 52, 732-740. doi:10.1016/j.foodhyd.2015.08.003

Martelli, M. R., Barros, T. T., de Moura, M. R., Mattoso, L. H. C., & Assis, O. B. G. (2012). Effect of Chitosan Nanoparticles and Pectin Content on Mechanical Properties and Water Vapor Permeability of Banana Puree Films. Journal of Food Science, 78(1), N98-N104. doi:10.1111/j.1750-3841.2012.03006.x

Chaichi, M., Hashemi, M., Badii, F., & Mohammadi, A. (2017). Preparation and characterization of a novel bionanocomposite edible film based on pectin and crystalline nanocellulose. Carbohydrate Polymers, 157, 167-175. doi:10.1016/j.carbpol.2016.09.062

Šešlija, S., Nešić, A., Škorić, M. L., Krušić, M. K., Santagata, G., & Malinconico, M. (2018). Pectin/Carboxymethylcellulose Films as a Potential Food Packaging Material. Macromolecular Symposia, 378(1), 1600163. doi:10.1002/masy.201600163

Pasini Cabello, S. D., Takara, E. A., Marchese, J., & Ochoa, N. A. (2015). Influence of plasticizers in pectin films: Microstructural changes. Materials Chemistry and Physics, 162, 491-497. doi:10.1016/j.matchemphys.2015.06.019

Espitia, P. J. P., Du, W.-X., Avena-Bustillos, R. de J., Soares, N. de F. F., & McHugh, T. H. (2014). Edible films from pectin: Physical-mechanical and antimicrobial properties - A review. Food Hydrocolloids, 35, 287-296. doi:10.1016/j.foodhyd.2013.06.005

Bhardwaj, N., & Kundu, S. C. (2010). Electrospinning: A fascinating fiber fabrication technique. Biotechnology Advances, 28(3), 325-347. doi:10.1016/j.biotechadv.2010.01.004

Torres-Giner, S., Wilkanowicz, S., Melendez-Rodriguez, B., & Lagaron, J. M. (2017). Nanoencapsulation of Aloe vera in Synthetic and Naturally Occurring Polymers by Electrohydrodynamic Processing of Interest in Food Technology and Bioactive Packaging. Journal of Agricultural and Food Chemistry, 65(22), 4439-4448. doi:10.1021/acs.jafc.7b01393

Torres-Giner, S., Pérez-Masiá, R., & Lagaron, J. M. (2016). A review on electrospun polymer nanostructures as advanced bioactive platforms. Polymer Engineering & Science, 56(5), 500-527. doi:10.1002/pen.24274

Frenot, A., & Chronakis, I. S. (2003). Polymer nanofibers assembled by electrospinning. Current Opinion in Colloid & Interface Science, 8(1), 64-75. doi:10.1016/s1359-0294(03)00004-9

Kim, J., & Reneker, D. H. (1999). Mechanical properties of composites using ultrafine electrospun fibers. Polymer Composites, 20(1), 124-131. doi:10.1002/pc.10340

Furlan, R., Rosado, J. A. M., Rodriguez, G. G., Fachini, E. R., da Silva, A. N. R., & da Silva, M. L. P. (2012). Formation and Characterization of Oriented Micro- and Nanofibers Containing Poly (ethylene oxide) and Pectin. Journal of The Electrochemical Society, 159(3), K66-K71. doi:10.1149/2.057203jes

Liu, S.-C., Li, R., Tomasula, P. M., Sousa, A. M. M., & Liu, L. (2016). Electrospun Food-Grade Ultrafine Fibers from Pectin and Pullulan Blends. Food and Nutrition Sciences, 07(07), 636-646. doi:10.4236/fns.2016.77065

Cui, S., Yao, B., Sun, X., Hu, J., Zhou, Y., & Liu, Y. (2016). Reducing the content of carrier polymer in pectin nanofibers by electrospinning at low loading followed with selective washing. Materials Science and Engineering: C, 59, 885-893. doi:10.1016/j.msec.2015.10.086

Cui, S.-S., Sun, X., Yao, B., Peng, X.-X., Zhang, X.-T., Zhou, Y.-F., … Liu, Y.-C. (2017). Size-Tunable Low Molecular Weight Pectin-Based Electrospun Nanofibers Blended with Low Content of Poly(ethylene oxide). Journal of Nanoscience and Nanotechnology, 17(1), 681-689. doi:10.1166/jnn.2017.12540

McCune, D., Guo, X., Shi, T., Stealey, S., Antrobus, R., Kaltchev, M., … Zhang, W. (2018). Electrospinning pectin-based nanofibers: a parametric and cross-linker study. Applied Nanoscience, 8(1-2), 33-40. doi:10.1007/s13204-018-0649-4

Chen, S., Cui, S., Zhang, H., Pei, X., Hu, J., Zhou, Y., & Liu, Y. (2018). Cross-Linked Pectin Nanofibers with Enhanced Cell Adhesion. Biomacromolecules, 19(2), 490-498. doi:10.1021/acs.biomac.7b01605

Li, K., Cui, S., Hu, J., Zhou, Y., & Liu, Y. (2018). Crosslinked pectin nanofibers with well-dispersed Ag nanoparticles: Preparation and characterization. Carbohydrate Polymers, 199, 68-74. doi:10.1016/j.carbpol.2018.07.013

Rockwell, P. L., Kiechel, M. A., Atchison, J. S., Toth, L. J., & Schauer, C. L. (2014). Various-sourced pectin and polyethylene oxide electrospun fibers. Carbohydrate Polymers, 107, 110-118. doi:10.1016/j.carbpol.2014.02.026

Akinalan Balik, B., & Argin, S. (2019). Role of rheology on the formation of Nanofibers from pectin and polyethylene oxide blends. Journal of Applied Polymer Science, 137(3), 48294. doi:10.1002/app.48294

Alborzi, S., Lim, L.-T., & Kakuda, Y. (2010). Electrospinning of Sodium Alginate-Pectin Ultrafine Fibers. Journal of Food Science, 75(1), C100-C107. doi:10.1111/j.1750-3841.2009.01437.x

Cherpinski, A., Torres-Giner, S., Cabedo, L., & Lagaron, J. M. (2017). Post-processing optimization of electrospun submicron poly(3-hydroxybutyrate) fibers to obtain continuous films of interest in food packaging applications. Food Additives & Contaminants: Part A, 34(10), 1817-1830. doi:10.1080/19440049.2017.1355115

Cherpinski, A., Torres-Giner, S., Vartiainen, J., Peresin, M. S., Lahtinen, P., & Lagaron, J. M. (2018). Improving the water resistance of nanocellulose-based films with polyhydroxyalkanoates processed by the electrospinning coating technique. Cellulose, 25(2), 1291-1307. doi:10.1007/s10570-018-1648-z

Melendez-Rodriguez, B., Castro-Mayorga, J. L., Reis, M. A. M., Sammon, C., Cabedo, L., Torres-Giner, S., & Lagaron, J. M. (2018). Preparation and Characterization of Electrospun Food Biopackaging Films of Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) Derived From Fruit Pulp Biowaste. Frontiers in Sustainable Food Systems, 2. doi:10.3389/fsufs.2018.00038

Melendez-Rodriguez, B., Figueroa-Lopez, K. J., Bernardos, A., Martínez-Máñez, R., Cabedo, L., Torres-Giner, S., & Lagaron, J. M. (2019). Electrospun Antimicrobial Films of Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) Containing Eugenol Essential Oil Encapsulated in Mesoporous Silica Nanoparticles. Nanomaterials, 9(2), 227. doi:10.3390/nano9020227

Figueroa-Lopez, K. J., Vicente, A. A., Reis, M. A. M., Torres-Giner, S., & Lagaron, J. M. (2019). Antimicrobial and Antioxidant Performance of Various Essential Oils and Natural Extracts and Their Incorporation into Biowaste Derived Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) Layers Made from Electrospun Ultrathin Fibers. Nanomaterials, 9(2), 144. doi:10.3390/nano9020144

Quiles-Carrillo, L., Montanes, N., Lagaron, J., Balart, R., & Torres-Giner, S. (2019). Bioactive Multilayer Polylactide Films with Controlled Release Capacity of Gallic Acid Accomplished by Incorporating Electrospun Nanostructured Coatings and Interlayers. Applied Sciences, 9(3), 533. doi:10.3390/app9030533

Agüero, A., Morcillo, M. del C., Quiles-Carrillo, L., Balart, R., Boronat, T., Lascano, D., … Fenollar, O. (2019). Study of the Influence of the Reprocessing Cycles on the Final Properties of Polylactide Pieces Obtained by Injection Molding. Polymers, 11(12), 1908. doi:10.3390/polym11121908

Ralet, M.-C., Crépeau, M.-J., Buchholt, H.-C., & Thibault, J.-F. (2003). Polyelectrolyte behaviour and calcium binding properties of sugar beet pectins differing in their degrees of methylation and acetylation. Biochemical Engineering Journal, 16(2), 191-201. doi:10.1016/s1369-703x(03)00037-8

Bizarria, M. T. M., d’ Ávila, M. A., & Mei, L. H. I. (2014). Non-woven nanofiber chitosan/peo membranes obtained by electrospinning. Brazilian Journal of Chemical Engineering, 31(1), 57-68. doi:10.1590/s0104-66322014000100007

Einhorn-Stoll, U., Kunzek, H., & Dongowski, G. (2007). Thermal analysis of chemically and mechanically modified pectins. Food Hydrocolloids, 21(7), 1101-1112. doi:10.1016/j.foodhyd.2006.08.004

Godeck, R., Kunzek, H., & Kabbert, R. (2001). Thermal analysis of plant cell wall materials depending on the chemical structure and pre-treatment prior to drying. European Food Research and Technology, 213(4-5), 395-404. doi:10.1007/s002170100388

Kastner, H., Einhorn-Stoll, U., & Senge, B. (2012). Structure formation in sugar containing pectin gels – Influence of Ca2+ on the gelation of low-methoxylated pectin at acidic pH. Food Hydrocolloids, 27(1), 42-49. doi:10.1016/j.foodhyd.2011.09.001

Nisar, T., Wang, Z.-C., Yang, X., Tian, Y., Iqbal, M., & Guo, Y. (2018). Characterization of citrus pectin films integrated with clove bud essential oil: Physical, thermal, barrier, antioxidant and antibacterial properties. International Journal of Biological Macromolecules, 106, 670-680. doi:10.1016/j.ijbiomac.2017.08.068

BUREN, J. P. (1979). THE CHEMISTRY OF TEXTURE IN FRUITS AND VEGETABLES. Journal of Texture Studies, 10(1), 1-23. doi:10.1111/j.1745-4603.1979.tb01305.x

Sila, D. N., Smout, C., Elliot, F., Loey, A. V., & Hendrickx, M. (2006). Non-enzymatic Depolymerization of Carrot Pectin: Toward a Better Understanding of Carrot Texture During Thermal Processing. Journal of Food Science, 71(1), E1-E9. doi:10.1111/j.1365-2621.2006.tb12391.x

Diaz, J. V., Anthon, G. E., & Barrett, D. M. (2007). Nonenzymatic Degradation of Citrus Pectin and Pectate during Prolonged Heating:  Effects of pH, Temperature, and Degree of Methyl Esterification. Journal of Agricultural and Food Chemistry, 55(13), 5131-5136. doi:10.1021/jf0701483

Krall, S. M., & McFeeters, R. F. (1998). Pectin Hydrolysis:  Effect of Temperature, Degree of Methylation, pH, and Calcium on Hydrolysis Rates. Journal of Agricultural and Food Chemistry, 46(4), 1311-1315. doi:10.1021/jf970473y

Rodrigo, D., Cortés, C., Clynen, E., Schoofs, L., Loey, A. V., & Hendrickx, M. (2006). Thermal and high-pressure stability of purified polygalacturonase and pectinmethylesterase from four different tomato processing varieties. Food Research International, 39(4), 440-448. doi:10.1016/j.foodres.2005.09.007

Aburto, J., Moran, M., Galano, A., & Torres-García, E. (2015). Non-isothermal pyrolysis of pectin: A thermochemical and kinetic approach. Journal of Analytical and Applied Pyrolysis, 112, 94-104. doi:10.1016/j.jaap.2015.02.012

Dick, M., Costa, T. M. H., Gomaa, A., Subirade, M., Rios, A. de O., & Flôres, S. H. (2015). Edible film production from chia seed mucilage: Effect of glycerol concentration on its physicochemical and mechanical properties. Carbohydrate Polymers, 130, 198-205. doi:10.1016/j.carbpol.2015.05.040

Mishra, R. K., Anis, A., Mondal, S., Dutt, M., & Banthia, A. K. (2009). REPARATION AND CHARACTERIZATION OF AMIDATED PECTIN BASED POLYMER ELECTROLYTE MEMBRANES. Chinese Journal of Polymer Science, 27(05), 639. doi:10.1142/s0256767909004333

Villanova, J. C. O., Ayres, E., & Oréfice, R. L. (2015). Design, characterization and preliminary in vitro evaluation of a mucoadhesive polymer based on modified pectin and acrylic monomers with potential use as a pharmaceutical excipient. Carbohydrate Polymers, 121, 372-381. doi:10.1016/j.carbpol.2014.12.052

Basiak, E., Lenart, A., & Debeaufort, F. (2018). How Glycerol and Water Contents Affect the Structural and Functional Properties of Starch-Based Edible Films. Polymers, 10(4), 412. doi:10.3390/polym10040412

Gondaliya, N., Kanchan, D. K., Sharma, P., & Joge, P. (2011). Structural and Conductivity Studies of Poly(Ethylene Oxide) – Silver Triflate Polymer Electrolyte System. Materials Sciences and Applications, 02(11), 1639-1643. doi:10.4236/msa.2011.211218

Sanchez-Garcia, M. D., Gimenez, E., & Lagaron, J. M. (2008). Morphology and barrier properties of solvent cast composites of thermoplastic biopolymers and purified cellulose fibers. Carbohydrate Polymers, 71(2), 235-244. doi:10.1016/j.carbpol.2007.05.041

Fabra, M. J., Lopez-Rubio, A., & Lagaron, J. M. (2014). Nanostructured interlayers of zein to improve the barrier properties of high barrier polyhydroxyalkanoates and other polyesters. Journal of Food Engineering, 127, 1-9. doi:10.1016/j.jfoodeng.2013.11.022

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem