- -

Dielectric relaxation dynamics in poly(vinylidene fluoride)/Pb(Zr0.53Ti0.47)O3 composites

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Dielectric relaxation dynamics in poly(vinylidene fluoride)/Pb(Zr0.53Ti0.47)O3 composites

Mostrar el registro completo del ítem

Costa, CM.; Sabater I Serra, R.; Balado, AA.; Gómez Ribelles, JL.; Lanceros-Méndez, S. (2020). Dielectric relaxation dynamics in poly(vinylidene fluoride)/Pb(Zr0.53Ti0.47)O3 composites. Polymer. 204:1-9. https://doi.org/10.1016/j.polymer.2020.122811

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/166516

Ficheros en el ítem

Metadatos del ítem

Título: Dielectric relaxation dynamics in poly(vinylidene fluoride)/Pb(Zr0.53Ti0.47)O3 composites
Autor: Costa, C. M. Sabater i Serra, Roser Balado, A. Andrio Gómez Ribelles, José Luís Lanceros-Méndez, S.
Entidad UPV: Universitat Politècnica de València. Departamento de Termodinámica Aplicada - Departament de Termodinàmica Aplicada
Universitat Politècnica de València. Departamento de Ingeniería Eléctrica - Departament d'Enginyeria Elèctrica
Fecha difusión:
Resumen:
[EN] Polymer-ceramic composites based on poly(vinylidene fluoride) and ceramic particles of the inorganic piezoelectric material Pb(Zr0.53Ti0.47)O-3 were prepared with different particle concentrations and size by solution ...[+]
Palabras clave: Composites , Dielectric analysis , PVDF , PZT , Smart materials
Derechos de uso: Reserva de todos los derechos
Fuente:
Polymer. (issn: 0032-3861 )
DOI: 10.1016/j.polymer.2020.122811
Editorial:
Elsevier
Versión del editor: https://doi.org/10.1016/j.polymer.2020.122811
Código del Proyecto:
info:eu-repo/grantAgreement/FCT/SFRH/FCT%2FSFRH%2FBPD%2F112547%2F2015/PT/
...[+]
info:eu-repo/grantAgreement/FCT/SFRH/FCT%2FSFRH%2FBPD%2F112547%2F2015/PT/
info:eu-repo/grantAgreement/FCT//UID%2FFIS%2F04650%2F2019/
info:eu-repo/grantAgreement/FCT//UID%2FEEA%2F04436%2F2019/
info:eu-repo/grantAgreement/FCT//PTDC%2FFIS-MAC%2F28157%2F2017/
info:eu-repo/grantAgreement/Eusko Jaurlaritza//PIBA-2018-06/
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-106099RB-C43/ES/DESARROLLO DE ANDAMIAJES BIOMIMETICOS ACTIVOS PARA EL ESTUDIO DE MICROENTORNO DE TUMOR EN OSTEOSARCOMA/
[-]
Agradecimientos:
The authors thank the FCT (Fundacao para a Ciencia e Tecnologia) for financial support under the framework of Strategic Funding grants UID/FIS/04650/2019, and UID/EEA/04436/2019; and project PTDC/FIS-MAC/28157/2017. The ...[+]
Tipo: Artículo

References

Newnham, R. E., Skinner, D. P., & Cross, L. E. (1978). Connectivity and piezoelectric-pyroelectric composites. Materials Research Bulletin, 13(5), 525-536. doi:10.1016/0025-5408(78)90161-7

Martins, P., Lopes, A. C., & Lanceros-Mendez, S. (2014). Electroactive phases of poly(vinylidene fluoride): Determination, processing and applications. Progress in Polymer Science, 39(4), 683-706. doi:10.1016/j.progpolymsci.2013.07.006

Sencadas, V., Moreira, M. V., Lanceros-Méndez, S., Pouzada, A. S., & Gregório Filho, R. (2006). α- to β Transformation on PVDF Films Obtained by Uniaxial Stretch. Materials Science Forum, 514-516, 872-876. doi:10.4028/www.scientific.net/msf.514-516.872 [+]
Newnham, R. E., Skinner, D. P., & Cross, L. E. (1978). Connectivity and piezoelectric-pyroelectric composites. Materials Research Bulletin, 13(5), 525-536. doi:10.1016/0025-5408(78)90161-7

Martins, P., Lopes, A. C., & Lanceros-Mendez, S. (2014). Electroactive phases of poly(vinylidene fluoride): Determination, processing and applications. Progress in Polymer Science, 39(4), 683-706. doi:10.1016/j.progpolymsci.2013.07.006

Sencadas, V., Moreira, M. V., Lanceros-Méndez, S., Pouzada, A. S., & Gregório Filho, R. (2006). α- to β Transformation on PVDF Films Obtained by Uniaxial Stretch. Materials Science Forum, 514-516, 872-876. doi:10.4028/www.scientific.net/msf.514-516.872

Sencadas, V., Gregorio, R., & Lanceros-Méndez, S. (2009). α to β Phase Transformation and Microestructural Changes of PVDF Films Induced by Uniaxial Stretch. Journal of Macromolecular Science, Part B, 48(3), 514-525. doi:10.1080/00222340902837527

Sencadas, V., Costa, C. M., Gómez Ribelles, J. L., & Lanceros-Mendez, S. (2009). Isothermal crystallization kinetics of poly(vinylidene fluoride) in the α-phase in the scope of the Avrami equation. Journal of Materials Science, 45(5), 1328-1335. doi:10.1007/s10853-009-4086-3

Sencadas, V., Gregorio Filho, R., & Lanceros-Mendez, S. (2006). Processing and characterization of a novel nonporous poly(vinilidene fluoride) films in the β phase. Journal of Non-Crystalline Solids, 352(21-22), 2226-2229. doi:10.1016/j.jnoncrysol.2006.02.052

Martins, P., Caparros, C., Gonçalves, R., Martins, P. M., Benelmekki, M., Botelho, G., & Lanceros-Mendez, S. (2012). Role of Nanoparticle Surface Charge on the Nucleation of the Electroactive β-Poly(vinylidene fluoride) Nanocomposites for Sensor and Actuator Applications. The Journal of Physical Chemistry C, 116(29), 15790-15794. doi:10.1021/jp3038768

Correia, D. M., Costa, C. M., Lizundia, E., Sabater i Serra, R., Gómez-Tejedor, J. A., Biosca, L. T., … Lanceros-Méndez, S. (2019). Influence of Cation and Anion Type on the Formation of the Electroactive β-Phase and Thermal and Dynamic Mechanical Properties of Poly(vinylidene fluoride)/Ionic Liquids Blends. The Journal of Physical Chemistry C, 123(45), 27917-27926. doi:10.1021/acs.jpcc.9b07986

Lopes, A. C., Caparros, C., Ferdov, S., & Lanceros-Mendez, S. (2012). Influence of zeolite structure and chemistry on the electrical response and crystallization phase of poly(vinylidene fluoride). Journal of Materials Science, 48(5), 2199-2206. doi:10.1007/s10853-012-6995-9

Sencadas, V., Lanceros-Méndez, S., Sabater i Serra, R., Andrio Balado, A., & Gómez Ribelles, J. L. (2012). Relaxation dynamics of poly(vinylidene fluoride) studied by dynamical mechanical measurements and dielectric spectroscopy. The European Physical Journal E, 35(5). doi:10.1140/epje/i2012-12041-x

Boyd, R. H. (1985). Relaxation processes in crystalline polymers: experimental behaviour — a review. Polymer, 26(3), 323-347. doi:10.1016/0032-3861(85)90192-2

Boyd, R. H. (1985). Relaxation processes in crystalline polymers: molecular interpretation — a review. Polymer, 26(8), 1123-1133. doi:10.1016/0032-3861(85)90240-x

Tian, L., Huang, X., & Tang, X. (2004). Study on morphology behavior of PVDF-based electrolytes. Journal of Applied Polymer Science, 92(6), 3839-3842. doi:10.1002/app.20402

Wong, G. H. ., Chua, B. ., Li, L., & Lai, M. . (2001). Processing of thermally stable doped perovskite PZT ceramics. Journal of Materials Processing Technology, 113(1-3), 450-455. doi:10.1016/s0924-0136(01)00631-8

Scott, J. F. (2005). New developments on FRAMs: [3D] structures and all-perovskite FETs. Materials Science and Engineering: B, 120(1-3), 6-12. doi:10.1016/j.mseb.2005.02.047

Haertling, G. H. (1999). Ferroelectric Ceramics: History and Technology. Journal of the American Ceramic Society, 82(4), 797-818. doi:10.1111/j.1151-2916.1999.tb01840.x

Wu, A., Vilarinho, P. M., Shvartsman, V. V., Suchaneck, G., & Kholkin, A. L. (2005). Domain populations in lead zirconate titanate thin films of different compositions via piezoresponse force microscopy. Nanotechnology, 16(11), 2587-2595. doi:10.1088/0957-4484/16/11/020

Payo, I., & Hale, J. M. (2011). Sensitivity analysis of piezoelectric paint sensors made up of PZT ceramic powder and water-based acrylic polymer. Sensors and Actuators A: Physical, 168(1), 77-89. doi:10.1016/j.sna.2011.04.008

Zhou, Q. ., Chan, H. L. ., & Choy, C. . (2000). PZT ceramic/ceramic 0–3 nanocomposite films for ultrasonic transducer applications. Thin Solid Films, 375(1-2), 95-99. doi:10.1016/s0040-6090(00)01232-3

Zhang, Y., Bao, Y., Zhang, D., & Bowen, C. R. (2015). Porous PZT Ceramics with Aligned Pore Channels for Energy Harvesting Applications. Journal of the American Ceramic Society, 98(10), 2980-2983. doi:10.1111/jace.13797

Furukawa, T., Ishida, K., & Fukada, E. (1979). Piezoelectric properties in the composite systems of polymers and PZT ceramics. Journal of Applied Physics, 50(7), 4904-4912. doi:10.1063/1.325592

Yamada, T., Ueda, T., & Kitayama, T. (1982). Piezoelectricity of a high‐content lead zirconate titanate/polymer composite. Journal of Applied Physics, 53(6), 4328-4332. doi:10.1063/1.331211

Marra, S. (1999). The mechanical properties of lead-titanate/polymer 0–3 composites. Composites Science and Technology, 59(14), 2163-2173. doi:10.1016/s0266-3538(99)00073-1

De-Qing, Z., Da-Wei, W., Jie, Y., Quan-Liang, Z., Zhi-Ying, W., & Mao-Sheng, C. (2008). Structural and Electrical Properties of PZT/PVDF Piezoelectric Nanocomposites Prepared by Cold-Press and Hot-Press Routes. Chinese Physics Letters, 25(12), 4410-4413. doi:10.1088/0256-307x/25/12/063

Jain, A., K. J., P., Sharma, A. K., Jain, A., & P.N, R. (2015). Dielectric and piezoelectric properties of PVDF/PZT composites: A review. Polymer Engineering & Science, 55(7), 1589-1616. doi:10.1002/pen.24088

Firmino Mendes, S., Costa, C. M., Sencadas, V., Serrado Nunes, J., Costa, P., Gregorio, R., & Lanceros-Méndez, S. (2009). Effect of the ceramic grain size and concentration on the dynamical mechanical and dielectric behavior of poly(vinilidene fluoride)/Pb(Zr0.53Ti0.47)O3 composites. Applied Physics A, 96(4), 899-908. doi:10.1007/s00339-009-5141-2

Wang, Y., Yao, M., Ma, R., Yuan, Q., Yang, D., Cui, B., … Hu, D. (2020). Design strategy of barium titanate/polyvinylidene fluoride-based nanocomposite films for high energy storage. Journal of Materials Chemistry A, 8(3), 884-917. doi:10.1039/c9ta11527g

Alexandre, M., Bessaguet, C., David, C., Dantras, E., & Lacabanne, C. (2016). Piezoelectric properties of polymer/lead-free ceramic composites. Phase Transitions, 89(7-8), 708-716. doi:10.1080/01411594.2016.1206898

Riquelme, S. A., & Ramam, K. (2019). Dielectric and piezoelectric properties of lead free BZT-BCT/PVDF flexible composites for electronic applications. Materials Research Express, 6(11), 116331. doi:10.1088/2053-1591/ab522c

Havriliak, S., & Negami, S. (1967). A complex plane representation of dielectric and mechanical relaxation processes in some polymers. Polymer, 8, 161-210. doi:10.1016/0032-3861(67)90021-3

Havriliak, S., & Negami, S. (2007). A complex plane analysis of α-dispersions in some polymer systems. Journal of Polymer Science Part C: Polymer Symposia, 14(1), 99-117. doi:10.1002/polc.5070140111

Ribeiro, C., Costa, C. M., Correia, D. M., Nunes-Pereira, J., Oliveira, J., Martins, P., … Lanceros-Méndez, S. (2018). Electroactive poly(vinylidene fluoride)-based structures for advanced applications. Nature Protocols, 13(4), 681-704. doi:10.1038/nprot.2017.157

Costa, C. M., Firmino Mendes, S., Sencadas, V., Ferreira, A., Gregorio, R., Gómez Ribelles, J. L., & Lanceros-Méndez, S. (2010). Influence of processing parameters on the polymer phase, microstructure and macroscopic properties of poly(vinilidene fluoride)/Pb(Zr0.53Ti0.47)O3 composites. Journal of Non-Crystalline Solids, 356(41-42), 2127-2133. doi:10.1016/j.jnoncrysol.2010.07.037

Lanceros-Mendez, S., Moreira, M. V., Mano, J. F., Schmidt, V. H., & Bohannan, G. (2002). Dielectric Behavior in an Oriented β-PVDF Film and Chain Reorientation Upon Transverse Mechanical Deformation. Ferroelectrics, 273(1), 15-20. doi:10.1080/00150190211756

Bello, A., Laredo, E., & Grimau, M. (1999). Distribution of relaxation times from dielectric spectroscopy using Monte Carlo simulated annealing: Application toα−PVDF. Physical Review B, 60(18), 12764-12774. doi:10.1103/physrevb.60.12764

Cole, K. S., & Cole, R. H. (1941). Dispersion and Absorption in Dielectrics I. Alternating Current Characteristics. The Journal of Chemical Physics, 9(4), 341-351. doi:10.1063/1.1750906

Davidson, D. W., & Cole, R. H. (1951). Dielectric Relaxation in Glycerol, Propylene Glycol, andn‐Propanol. The Journal of Chemical Physics, 19(12), 1484-1490. doi:10.1063/1.1748105

Silva, M. P., Sencadas, V., Botelho, G., Machado, A. V., Rolo, A. G., Rocha, J. G., & Lanceros-Mendez, S. (2010). α- and γ-PVDF: Crystallization kinetics, microstructural variations and thermal behaviour. Materials Chemistry and Physics, 122(1), 87-92. doi:10.1016/j.matchemphys.2010.02.067

Angell, C. A., Moynihan, C. T., & Hemmati, M. (2000). `Strong’ and `superstrong’ liquids, and an approach to the perfect glass state via phase transition. Journal of Non-Crystalline Solids, 274(1-3), 319-331. doi:10.1016/s0022-3093(00)00222-2

Angell, C. . (1991). Relaxation in liquids, polymers and plastic crystals — strong/fragile patterns and problems. Journal of Non-Crystalline Solids, 131-133, 13-31. doi:10.1016/0022-3093(91)90266-9

Kwon, S.-C., & Adachi, T. (2007). Strength and fracture toughness of nano and micron-silica particles bidispersed epoxy composites: evaluated by fragility parameter. Journal of Materials Science, 42(14), 5516-5523. doi:10.1007/s10853-006-1025-4

Harnischfeger, P., & Jungnickel, B.-J. (1990). Features and origin of the dynamic and the nonlinear piezoelectricity in poly (vinylidene fluoride). Ferroelectrics, 109(1), 279-284. doi:10.1080/00150199008211426

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem