- -

Performance of a Set of Eggplant (Solanum melongena) Lines With Introgressions From Its Wild Relative S. incanum Under Open Field and Screenhouse Conditions and Detection of QTLs

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

  • Estadisticas de Uso

Performance of a Set of Eggplant (Solanum melongena) Lines With Introgressions From Its Wild Relative S. incanum Under Open Field and Screenhouse Conditions and Detection of QTLs

Show full item record

Mangino, G.; Plazas Ávila, MDLO.; Vilanova Navarro, S.; Prohens Tomás, J.; Gramazio, P. (2020). Performance of a Set of Eggplant (Solanum melongena) Lines With Introgressions From Its Wild Relative S. incanum Under Open Field and Screenhouse Conditions and Detection of QTLs. Agronomy. 10(4):1-15. https://doi.org/10.3390/agronomy10040467

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/166996

Files in this item

Item Metadata

Title: Performance of a Set of Eggplant (Solanum melongena) Lines With Introgressions From Its Wild Relative S. incanum Under Open Field and Screenhouse Conditions and Detection of QTLs
Author: Mangino, Giulio Plazas Ávila, María de la O Vilanova Navarro, Santiago Prohens Tomás, Jaime Gramazio, Pietro
UPV Unit: Universitat Politècnica de València. Departamento de Biotecnología - Departament de Biotecnologia
Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes
Universitat Politècnica de València. Instituto Universitario de Conservación y Mejora de la Agrodiversidad Valenciana - Institut Universitari de Conservació i Millora de l'Agrodiversitat Valenciana
Issued date:
Abstract:
[EN] Introgression lines (ILs) of eggplant (Solanum melongena) represent a resource of high value for breeding and the genetic analysis of important traits. We have conducted a phenotypic evaluation in two environments ...[+]
Subjects: Solanum melongena , S. incanum , Introgression lines , Stable QTL analysis , Agronomic traits , G x E interaction , Synteny
Copyrigths: Reconocimiento (by)
Source:
Agronomy. (eissn: 2073-4395 )
DOI: 10.3390/agronomy10040467
Publisher:
MDPI
Publisher version: https://doi.org/10.3390/agronomy10040467
Project ID:
info:eu-repo/grantAgreement/EC/H2020/677379/EU/Linking genetic resources, genomes and phenotypes of Solanaceous crops/
...[+]
info:eu-repo/grantAgreement/EC/H2020/677379/EU/Linking genetic resources, genomes and phenotypes of Solanaceous crops/
info:eu-repo/grantAgreement/JSPS//FY2019/
info:eu-repo/grantAgreement/UPV//PAID-06-18/
info:eu-repo/grantAgreement/MINECO//AGL2015-64755-R/ES/MEJORA GENETICA DE LA CALIDAD FUNCIONAL Y APARENTE DE LA BERENJENA/
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-094592-B-I00/ES/INTROGRESION DE TOLERANCIA A LA SEQUIA PROCEDENTE DE ESPECIES SILVESTRES PARA LA MEJORA GENETICA DE LA BERENJENA/
info:eu-repo/grantAgreement/GVA//GRISOLIAP%2F2016%2F012/
info:eu-repo/grantAgreement/JSPS//P19105/
[-]
Thanks:
This work was undertaken as part of the initiative "Adapting Agriculture to Climate Change: Collecting, Protecting, and Preparing Crop Wild Relatives", which is supported by the Government of Norway. The project is managed ...[+]
Type: Artículo

References

FAOSTAThttp://www.fao.org/faostat/

Gebhardt, C. (2016). The historical role of species from the Solanaceae plant family in genetic research. Theoretical and Applied Genetics, 129(12), 2281-2294. doi:10.1007/s00122-016-2804-1

Hirakawa, H., Shirasawa, K., Miyatake, K., Nunome, T., Negoro, S., Ohyama, A., … Fukuoka, H. (2014). Draft Genome Sequence of Eggplant (Solanum melongena L.): the Representative Solanum Species Indigenous to the Old World. DNA Research, 21(6), 649-660. doi:10.1093/dnares/dsu027 [+]
FAOSTAThttp://www.fao.org/faostat/

Gebhardt, C. (2016). The historical role of species from the Solanaceae plant family in genetic research. Theoretical and Applied Genetics, 129(12), 2281-2294. doi:10.1007/s00122-016-2804-1

Hirakawa, H., Shirasawa, K., Miyatake, K., Nunome, T., Negoro, S., Ohyama, A., … Fukuoka, H. (2014). Draft Genome Sequence of Eggplant (Solanum melongena L.): the Representative Solanum Species Indigenous to the Old World. DNA Research, 21(6), 649-660. doi:10.1093/dnares/dsu027

Barchi, L., Pietrella, M., Venturini, L., Minio, A., Toppino, L., Acquadro, A., … Rotino, G. L. (2019). A chromosome-anchored eggplant genome sequence reveals key events in Solanaceae evolution. Scientific Reports, 9(1). doi:10.1038/s41598-019-47985-w

Gramazio, P., Yan, H., Hasing, T., Vilanova, S., Prohens, J., & Bombarely, A. (2019). Whole-Genome Resequencing of Seven Eggplant (Solanum melongena) and One Wild Relative (S. incanum) Accessions Provides New Insights and Breeding Tools for Eggplant Enhancement. Frontiers in Plant Science, 10. doi:10.3389/fpls.2019.01220

GRAMAZIO, P., PROHENS, J., PLAZAS, M., MANGINO, G., HERRAIZ, F. J., GARCÍA-FORTEA, E., & VILANOVA, S. (2018). Genomic Tools for the Enhancement of Vegetable Crops: A Case in Eggplant. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 46(1), 1-13. doi:10.15835/nbha46110936

Frary, A., Frary, A., Daunay, M.-C., Huvenaars, K., Mank, R., & Doğanlar, S. (2014). QTL hotspots in eggplant (Solanum melongena) detected with a high resolution map and CIM analysis. Euphytica, 197(2), 211-228. doi:10.1007/s10681-013-1060-6

Portis, E., Cericola, F., Barchi, L., Toppino, L., Acciarri, N., Pulcini, L., … Rotino, G. L. (2015). Association Mapping for Fruit, Plant and Leaf Morphology Traits in Eggplant. PLOS ONE, 10(8), e0135200. doi:10.1371/journal.pone.0135200

Toppino, L., Valè, G., & Rotino, G. L. (2008). Inheritance of Fusarium wilt resistance introgressed from Solanum aethiopicum Gilo and Aculeatum groups into cultivated eggplant (S. melongena) and development of associated PCR-based markers. Molecular Breeding, 22(2), 237-250. doi:10.1007/s11032-008-9170-x

Liu, J., Zheng, Z., Zhou, X., Feng, C., & Zhuang, Y. (2014). Improving the resistance of eggplant (Solanum melongena) to Verticillium wilt using wild species Solanum linnaeanum. Euphytica, 201(3), 463-469. doi:10.1007/s10681-014-1234-x

Kouassi, B., Prohens, J., Gramazio, P., Kouassi, A. B., Vilanova, S., Galán-Ávila, A., … Plazas, M. (2016). Development of backcross generations and new interspecific hybrid combinations for introgression breeding in eggplant (Solanum melongena). Scientia Horticulturae, 213, 199-207. doi:10.1016/j.scienta.2016.10.039

Plazas, M., Vilanova, S., Gramazio, P., Rodríguez-Burruezo, A., Fita, A., Herraiz, F. J., … Prohens, J. (2016). Interspecific Hybridization between Eggplant and Wild Relatives from Different Genepools. Journal of the American Society for Horticultural Science, 141(1), 34-44. doi:10.21273/jashs.141.1.34

García-Fortea, E., Gramazio, P., Vilanova, S., Fita, A., Mangino, G., Villanueva, G., … Plazas, M. (2019). First successful backcrossing towards eggplant (Solanum melongena) of a New World species, the silverleaf nightshade (S. elaeagnifolium), and characterization of interspecific hybrids and backcrosses. Scientia Horticulturae, 246, 563-573. doi:10.1016/j.scienta.2018.11.018

Gramazio, P., Prohens, J., Plazas, M., Mangino, G., Herraiz, F. J., & Vilanova, S. (2017). Development and Genetic Characterization of Advanced Backcross Materials and An Introgression Line Population of Solanum incanum in a S. melongena Background. Frontiers in Plant Science, 8. doi:10.3389/fpls.2017.01477

Syfert, M. M., Castañeda-Álvarez, N. P., Khoury, C. K., Särkinen, T., Sosa, C. C., Achicanoy, H. A., … Knapp, S. (2016). Crop wild relatives of the brinjal eggplant (Solanum melongena): Poorly represented in genebanks and many species at risk of extinction. American Journal of Botany, 103(4), 635-651. doi:10.3732/ajb.1500539

Knapp, S., Vorontsova, M. S., & Prohens, J. (2013). Wild Relatives of the Eggplant (Solanum melongena L.: Solanaceae): New Understanding of Species Names in a Complex Group. PLoS ONE, 8(2), e57039. doi:10.1371/journal.pone.0057039

Stommel, J. R., & Whitaker, B. D. (2003). Phenolic Acid Content and Composition of Eggplant Fruit in a Germplasm Core Subset. Journal of the American Society for Horticultural Science, 128(5), 704-710. doi:10.21273/jashs.128.5.0704

Ma, C., Dastmalchi, K., Whitaker, B. D., & Kennelly, E. J. (2011). Two New Antioxidant Malonated Caffeoylquinic Acid Isomers in Fruits of Wild Eggplant Relatives. Journal of Agricultural and Food Chemistry, 59(17), 9645-9651. doi:10.1021/jf202028y

Prohens, J., Whitaker, B. D., Plazas, M., Vilanova, S., Hurtado, M., Blasco, M., … Stommel, J. R. (2013). Genetic diversity in morphological characters and phenolic acids content resulting from an interspecific cross between eggplant,Solanum melongena, and its wild ancestor (S. incanum). Annals of Applied Biology, 162(2), 242-257. doi:10.1111/aab.12017

Meyer, R. S., Whitaker, B. D., Little, D. P., Wu, S.-B., Kennelly, E. J., Long, C.-L., & Litt, A. (2015). Parallel reductions in phenolic constituents resulting from the domestication of eggplant. Phytochemistry, 115, 194-206. doi:10.1016/j.phytochem.2015.02.006

Taher, D., Solberg, S. Ø., Prohens, J., Chou, Y., Rakha, M., & Wu, T. (2017). World Vegetable Center Eggplant Collection: Origin, Composition, Seed Dissemination and Utilization in Breeding. Frontiers in Plant Science, 8. doi:10.3389/fpls.2017.01484

Gisbert, C., Prohens, J., Raigón, M. D., Stommel, J. R., & Nuez, F. (2011). Eggplant relatives as sources of variation for developing new rootstocks: Effects of grafting on eggplant yield and fruit apparent quality and composition. Scientia Horticulturae, 128(1), 14-22. doi:10.1016/j.scienta.2010.12.007

Salas, P., Prohens, J., & Seguí-Simarro, J. M. (2011). Evaluation of androgenic competence through anther culture in common eggplant and related species. Euphytica, 182(2). doi:10.1007/s10681-011-0490-2

Gramazio, P., Prohens, J., Plazas, M., Andújar, I., Herraiz, F. J., Castillo, E., … Vilanova, S. (2014). Location of chlorogenic acid biosynthesis pathway and polyphenol oxidase genes in a new interspecific anchored linkage map of eggplant. BMC Plant Biology, 14(1). doi:10.1186/s12870-014-0350-z

Gramazio, P., Blanca, J., Ziarsolo, P., Herraiz, F. J., Plazas, M., Prohens, J., & Vilanova, S. (2016). Transcriptome analysis and molecular marker discovery in Solanum incanum and S. aethiopicum, two close relatives of the common eggplant (Solanum melongena) with interest for breeding. BMC Genomics, 17(1). doi:10.1186/s12864-016-2631-4

Gramazio, P., Prohens, J., Borràs, D., Plazas, M., Herraiz, F. J., & Vilanova, S. (2017). Comparison of transcriptome-derived simple sequence repeat (SSR) and single nucleotide polymorphism (SNP) markers for genetic fingerprinting, diversity evaluation, and establishment of relationships in eggplants. Euphytica, 213(12). doi:10.1007/s10681-017-2057-3

Dempewolf, H., Eastwood, R. J., Guarino, L., Khoury, C. K., Müller, J. V., & Toll, J. (2014). Adapting Agriculture to Climate Change: A Global Initiative to Collect, Conserve, and Use Crop Wild Relatives. Agroecology and Sustainable Food Systems, 38(4), 369-377. doi:10.1080/21683565.2013.870629

Prohens, J., Gramazio, P., Plazas, M., Dempewolf, H., Kilian, B., Díez, M. J., … Vilanova, S. (2017). Introgressiomics: a new approach for using crop wild relatives in breeding for adaptation to climate change. Euphytica, 213(7). doi:10.1007/s10681-017-1938-9

Eshed, Y., & Zamir, D. (1994). A genomic library of Lycopersicon pennellii in L. esculentum: A tool for fine mapping of genes. Euphytica, 79(3), 175-179. doi:10.1007/bf00022516

Zamir, D. (2001). Improving plant breeding with exotic genetic libraries. Nature Reviews Genetics, 2(12), 983-989. doi:10.1038/35103590

Eduardo, I., Arús, P., & Monforte, A. J. (2005). Development of a genomic library of near isogenic lines (NILs) in melon (Cucumis melo L.) from the exotic accession PI161375. Theoretical and Applied Genetics, 112(1), 139-148. doi:10.1007/s00122-005-0116-y

Eshed, Y., & Zamir, D. (1995). An introgression line population of Lycopersicon pennellii in the cultivated tomato enables the identification and fine mapping of yield-associated QTL. Genetics, 141(3), 1147-1162. doi:10.1093/genetics/141.3.1147

Alonso-Blanco, C., Koornneef, M., & van Ooijen, J. W. (s. f.). QTL Analysis. Arabidopsis Protocols, 79-100. doi:10.1385/1-59745-003-0:79

Gur, A., & Zamir, D. (2015). Mendelizing all Components of a Pyramid of Three Yield QTL in Tomato. Frontiers in Plant Science, 6. doi:10.3389/fpls.2015.01096

Tanksley, S. D., & Nelson, J. C. (1996). Advanced backcross QTL analysis: a method for the simultaneous discovery and transfer of valuable QTLs from unadapted germplasm into elite breeding lines. Theoretical and Applied Genetics, 92(2), 191-203. doi:10.1007/bf00223376

Ashikari, M., & Matsuoka, M. (2006). Identification, isolation and pyramiding of quantitative trait loci for rice breeding. Trends in Plant Science, 11(7), 344-350. doi:10.1016/j.tplants.2006.05.008

Calafiore, R., Aliberti, A., Ruggieri, V., Olivieri, F., Rigano, M. M., & Barone, A. (2019). Phenotypic and Molecular Selection of a Superior Solanum pennellii Introgression Sub-Line Suitable for Improving Quality Traits of Cultivated Tomatoes. Frontiers in Plant Science, 10. doi:10.3389/fpls.2019.00190

Eshed, Y., & Zamir, D. (1996). Less-Than-Additive Epistatic Interactions of Quantitative Trait Loci in Tomato. Genetics, 143(4), 1807-1817. doi:10.1093/genetics/143.4.1807

Jena, K. K., Kochert, G., & Khush, G. S. (1992). RFLP analysis of rice (Oryza sativa L.) introgression lines. Theoretical and Applied Genetics, 84-84(5-6), 608-616. doi:10.1007/bf00224159

Pestsova, E. G., Börner, A., & Röder, M. S. (2004). Development of a Set of Triticum Aestivum-Aegilops Tauschii Introgression Lines. Hereditas, 135(2-3), 139-143. doi:10.1111/j.1601-5223.2001.00139.x

Szalma, S. J., Hostert, B. M., LeDeaux, J. R., Stuber, C. W., & Holland, J. B. (2007). QTL mapping with near-isogenic lines in maize. Theoretical and Applied Genetics, 114(7), 1211-1228. doi:10.1007/s00122-007-0512-6

Eshed, Y., Abu-Abied, M., Saranga, Y., & Zamir, D. (1992). Lycopersicon esculentum lines containing small overlapping introgressions from L. pennellii. Theoretical and Applied Genetics, 83(8), 1027-1034. doi:10.1007/bf00232968

Monforte, A. J., & Tanksley, S. D. (2000). Development of a set of near isogenic and backcross recombinant inbred lines containing most of the Lycopersicon hirsutum genome in a L. esculentum genetic background: A tool for gene mapping and gene discovery. Genome, 43(5), 803-813. doi:10.1139/g00-043

Chetelat, R. T., Qin, X., Tan, M., Burkart‐Waco, D., Moritama, Y., Huo, X., … Pertuzé, R. (2019). Introgression lines of Solanum sitiens , a wild nightshade of the Atacama Desert, in the genome of cultivated tomato. The Plant Journal, 100(4), 836-850. doi:10.1111/tpj.14460

Schauer, N., Semel, Y., Roessner, U., Gur, A., Balbo, I., Carrari, F., … Fernie, A. R. (2006). Comprehensive metabolic profiling and phenotyping of interspecific introgression lines for tomato improvement. Nature Biotechnology, 24(4), 447-454. doi:10.1038/nbt1192

Rigano, M. M., Raiola, A., Tenore, G. C., Monti, D. M., Del Giudice, R., Frusciante, L., & Barone, A. (2014). Quantitative Trait Loci Pyramiding Can Improve the Nutritional Potential of Tomato (Solanum lycopersicum) Fruits. Journal of Agricultural and Food Chemistry, 62(47), 11519-11527. doi:10.1021/jf502573n

Alseekh, S., Tohge, T., Wendenberg, R., Scossa, F., Omranian, N., Li, J., … Fernie, A. R. (2015). Identification and Mode of Inheritance of Quantitative Trait Loci for Secondary Metabolite Abundance in Tomato. The Plant Cell, 27(3), 485-512. doi:10.1105/tpc.114.132266

Krause, K., Johnsen, H. R., Pielach, A., Lund, L., Fischer, K., & Rose, J. K. C. (2017). Identification of tomato introgression lines with enhanced susceptibility or resistance to infection by parasitic giant dodder ( Cuscuta reflexa ). Physiologia Plantarum, 162(2), 205-218. doi:10.1111/ppl.12660

Salvi, S., Corneti, S., Bellotti, M., Carraro, N., Sanguineti, M. C., Castelletti, S., & Tuberosa, R. (2011). Genetic dissection of maize phenology using an intraspecific introgression library. BMC Plant Biology, 11(1), 4. doi:10.1186/1471-2229-11-4

Ma, X., Fu, Y., Zhao, X., Jiang, L., Zhu, Z., Gu, P., … Tan, L. (2016). Genomic structure analysis of a set of Oryza nivara introgression lines and identification of yield-associated QTLs using whole-genome resequencing. Scientific Reports, 6(1). doi:10.1038/srep27425

Qiu, X., Chen, K., Lv, W., Ou, X., Zhu, Y., Xing, D., … Li, Z. (2017). Examining two sets of introgression lines reveals background-independent and stably expressed QTL that improve grain appearance quality in rice (Oryza sativa L.). Theoretical and Applied Genetics, 130(5), 951-967. doi:10.1007/s00122-017-2862-z

De Leon, T. B., Linscombe, S., & Subudhi, P. K. (2017). Identification and validation of QTLs for seedling salinity tolerance in introgression lines of a salt tolerant rice landrace ‘Pokkali’. PLOS ONE, 12(4), e0175361. doi:10.1371/journal.pone.0175361

Honsdorf, N., March, T. J., & Pillen, K. (2017). QTL controlling grain filling under terminal drought stress in a set of wild barley introgression lines. PLOS ONE, 12(10), e0185983. doi:10.1371/journal.pone.0185983

Qin, G., Nguyen, H. M., Luu, S. N., Wang, Y., & Zhang, Z. (2018). Construction of introgression lines of Oryza rufipogon and evaluation of important agronomic traits. Theoretical and Applied Genetics, 132(2), 543-553. doi:10.1007/s00122-018-3241-0

Zhao, X., Daygon, V. D., McNally, K. L., Hamilton, R. S., Xie, F., Reinke, R. F., & Fitzgerald, M. A. (2015). Identification of stable QTLs causing chalk in rice grains in nine environments. Theoretical and Applied Genetics, 129(1), 141-153. doi:10.1007/s00122-015-2616-8

Ranil, R. H. G., Niran, H. M. L., Plazas, M., Fonseka, R. M., Fonseka, H. H., Vilanova, S., … Prohens, J. (2015). Improving seed germination of the eggplant rootstock Solanum torvum by testing multiple factors using an orthogonal array design. Scientia Horticulturae, 193, 174-181. doi:10.1016/j.scienta.2015.07.030

Balakrishnan, D., Surapaneni, M., Mesapogu, S., & Neelamraju, S. (2018). Development and use of chromosome segment substitution lines as a genetic resource for crop improvement. Theoretical and Applied Genetics, 132(1), 1-25. doi:10.1007/s00122-018-3219-y

Wang, J.-X., Gao, T.-G., & Knapp, S. (2008). Ancient Chinese Literature Reveals Pathways of Eggplant Domestication. Annals of Botany, 102(6), 891-897. doi:10.1093/aob/mcn179

Page, A., Gibson, J., Meyer, R. S., & Chapman, M. A. (2019). Eggplant Domestication: Pervasive Gene Flow, Feralization, and Transcriptomic Divergence. Molecular Biology and Evolution, 36(7), 1359-1372. doi:10.1093/molbev/msz062

Kaushik, P., Prohens, J., Vilanova, S., Gramazio, P., & Plazas, M. (2016). Phenotyping of Eggplant Wild Relatives and Interspecific Hybrids with Conventional and Phenomics Descriptors Provides Insight for Their Potential Utilization in Breeding. Frontiers in Plant Science, 7. doi:10.3389/fpls.2016.00677

Prohens, J., Plazas, M., Raigón, M. D., Seguí-Simarro, J. M., Stommel, J. R., & Vilanova, S. (2012). Characterization of interspecific hybrids and first backcross generations from crosses between two cultivated eggplants (Solanum melongena and S. aethiopicum Kumba group) and implications for eggplant breeding. Euphytica, 186(2), 517-538. doi:10.1007/s10681-012-0652-x

Frary, A., Nesbitt, T. C., Frary, A., Grandillo, S., Knaap, E. van der, Cong, B., … Tanksley, S. D. (2000). fw2.2  : A Quantitative Trait Locus Key to the Evolution of Tomato Fruit Size. Science, 289(5476), 85-88. doi:10.1126/science.289.5476.85

Schouten, H. J., Tikunov, Y., Verkerke, W., Finkers, R., Bovy, A., Bai, Y., & Visser, R. G. F. (2019). Breeding Has Increased the Diversity of Cultivated Tomato in The Netherlands. Frontiers in Plant Science, 10. doi:10.3389/fpls.2019.01606

Kearsey, M. J., & Farquhar, A. G. L. (1998). QTL analysis in plants; where are we now? Heredity, 80(2), 137-142. doi:10.1046/j.1365-2540.1998.00500.x

Frary, A., Doganlar, S., Daunay, M. C., & Tanksley, S. D. (2003). QTL analysis of morphological traits in eggplant and implications for conservation of gene function during evolution of solanaceous species. Theoretical and Applied Genetics, 107(2), 359-370. doi:10.1007/s00122-003-1257-5

Fassio, C., Cautin, R., Pérez-Donoso, A., Bonomelli, C., & Castro, M. (2016). Propagation Techniques and Grafting Modify the Morphological Traits of Roots and Biomass Allocation in Avocado Trees. HortTechnology, 26(1), 63-69. doi:10.21273/horttech.26.1.63

Chen, K.-Y., & Tanksley, S. D. (2004). High-Resolution Mapping and Functional Analysis of se2.1. Genetics, 168(3), 1563-1573. doi:10.1534/genetics.103.022558

Xu, J., Driedonks, N., Rutten, M. J. M., Vriezen, W. H., de Boer, G.-J., & Rieu, I. (2017). Mapping quantitative trait loci for heat tolerance of reproductive traits in tomato (Solanum lycopersicum). Molecular Breeding, 37(5). doi:10.1007/s11032-017-0664-2

Portis, E., Barchi, L., Toppino, L., Lanteri, S., Acciarri, N., Felicioni, N., … Rotino, G. L. (2014). QTL Mapping in Eggplant Reveals Clusters of Yield-Related Loci and Orthology with the Tomato Genome. PLoS ONE, 9(2), e89499. doi:10.1371/journal.pone.0089499

Grandillo, S., Ku, H. M., & Tanksley, S. D. (1999). Identifying the loci responsible for natural variation in fruit size and shape in tomato. Theoretical and Applied Genetics, 99(6), 978-987. doi:10.1007/s001220051405

Illa-Berenguer, E., Van Houten, J., Huang, Z., & van der Knaap, E. (2015). Rapid and reliable identification of tomato fruit weight and locule number loci by QTL-seq. Theoretical and Applied Genetics, 128(7), 1329-1342. doi:10.1007/s00122-015-2509-x

Cambiaso, V., Gimenez, M. D., da Costa, J. H. P., Vazquez, D. V., Picardi, L. A., Pratta, G. R., & Rodríguez, G. R. (2019). Selected genome regions for fruit weight and shelf life in tomato RILs discernible by markers based on genomic sequence information. Breeding Science, 69(3), 447-454. doi:10.1270/jsbbs.19015

Chakrabarti, M., Zhang, N., Sauvage, C., Munos, S., Blanca, J., Canizares, J., … van der Knaap, E. (2013). A cytochrome P450 regulates a domestication trait in cultivated tomato. Proceedings of the National Academy of Sciences, 110(42), 17125-17130. doi:10.1073/pnas.1307313110

Mu, Q., Huang, Z., Chakrabarti, M., Illa-Berenguer, E., Liu, X., Wang, Y., … van der Knaap, E. (2017). Fruit weight is controlled by Cell Size Regulator encoding a novel protein that is expressed in maturing tomato fruits. PLOS Genetics, 13(8), e1006930. doi:10.1371/journal.pgen.1006930

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record