- -

Performance of a Set of Eggplant (Solanum melongena) Lines With Introgressions From Its Wild Relative S. incanum Under Open Field and Screenhouse Conditions and Detection of QTLs

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Performance of a Set of Eggplant (Solanum melongena) Lines With Introgressions From Its Wild Relative S. incanum Under Open Field and Screenhouse Conditions and Detection of QTLs

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Mangino, Giulio es_ES
dc.contributor.author Plazas Ávila, María de la O es_ES
dc.contributor.author Vilanova Navarro, Santiago es_ES
dc.contributor.author Prohens Tomás, Jaime es_ES
dc.contributor.author Gramazio, Pietro es_ES
dc.date.accessioned 2021-06-01T03:31:34Z
dc.date.available 2021-06-01T03:31:34Z
dc.date.issued 2020-04 es_ES
dc.identifier.uri http://hdl.handle.net/10251/166996
dc.description.abstract [EN] Introgression lines (ILs) of eggplant (Solanum melongena) represent a resource of high value for breeding and the genetic analysis of important traits. We have conducted a phenotypic evaluation in two environments (open field and screenhouse) of 16 ILs from the first set of eggplant ILs developed so far. Each of the ILs carries a single marker-defined chromosomal segment from the wild eggplant relative S. incanum (accession MM577) in the genetic background of S. melongena (accession AN-S-26). Seventeen agronomic traits were scored to test the performance of ILs compared to the recurrent parent and of identifying QTLs for the investigated traits. Significant morphological differences were found between parents, and the hybrid was heterotic for vigour-related traits. Despite the presence of large introgressed fragments from a wild exotic parent, individual ILs did not display differences with respect to the recipient parent for most traits, although significant genotype x environment interaction (G x E) was detected for most traits. Heritability values for the agronomic traits were generally low to moderate. A total of ten stable QTLs scattered across seven chromosomes was detected. For five QTLs, the S. incanum introgression was associated with higher mean values for plant- and flower-related traits, including vigour prickliness and stigma length. For one flower- and four fruit-related-trait QTLs, including flower peduncle and fruit pedicel lengths and fruit weight, the S. incanum introgression was associated with lower mean values for fruit-related traits. Evidence of synteny to other previously reported in eggplant populations was found for three of the fruit-related QTLs. The other seven stable QTLs are new, demonstrating that eggplant ILs are of great interest for eggplant breeding under different environments. es_ES
dc.description.sponsorship This work was undertaken as part of the initiative "Adapting Agriculture to Climate Change: Collecting, Protecting, and Preparing Crop Wild Relatives", which is supported by the Government of Norway. The project is managed by the Global Crop Diversity Trust with the Millennium Seed Bank of the Royal Botanic Gardens, Kew and implemented in partnership with national and international gene banks and plant breeding institutes around the world. For further information, see the project website: http://www.cwrdiversity.org/.Funding was also received from Spanish Ministerio de Economia, Industria y Competitividad and Fondo Europeo de Desarrollo Regional (grant AGL2015-64755-R from MINECO/FEDER); from Ministerio de Ciencia, Innovacion y Universidades, Agencia Estatal de Investigacion and Fondo Europeo de Desarrollo Regional (grant RTI-2018-094592-B-100 from MCIU/AEI/FEDER, UE); from European Union's Horizon 2020 Research and Innovation Programme under grant agreement No. 677379 (G2P-SOL project: Linking genetic resources, genomes and phenotypes of Solanaceous crops); and from Vicerrectorado de Investigacion, Innovacion y Transferencia de la Universitat Politecnica de Valencia (Ayuda a Primeros Proyectos de Investigacion; PAID-06-18). Giulio Mangino is grateful to Generalitat Valenciana for a predoctoral grant within the Santiago Grisolia programme (GRISOLIAP/2016/012). Pietro Gramazio is grateful to Japan Society for the Promotion of Science for a postdoctoral grant (P19105, FY2019 JSPS Postdoctoral Fellowship for Research in Japan (Standard)). es_ES
dc.language Inglés es_ES
dc.publisher MDPI es_ES
dc.relation.ispartof Agronomy es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Solanum melongena es_ES
dc.subject S. incanum es_ES
dc.subject Introgression lines es_ES
dc.subject Stable QTL analysis es_ES
dc.subject Agronomic traits es_ES
dc.subject G x E interaction es_ES
dc.subject Synteny es_ES
dc.subject.classification GENETICA es_ES
dc.title Performance of a Set of Eggplant (Solanum melongena) Lines With Introgressions From Its Wild Relative S. incanum Under Open Field and Screenhouse Conditions and Detection of QTLs es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/agronomy10040467 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/677379/EU/Linking genetic resources, genomes and phenotypes of Solanaceous crops/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/JSPS//FY2019/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UPV//PAID-06-18/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//AGL2015-64755-R/ES/MEJORA GENETICA DE LA CALIDAD FUNCIONAL Y APARENTE DE LA BERENJENA/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-094592-B-I00/ES/INTROGRESION DE TOLERANCIA A LA SEQUIA PROCEDENTE DE ESPECIES SILVESTRES PARA LA MEJORA GENETICA DE LA BERENJENA/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//GRISOLIAP%2F2016%2F012/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/JSPS//P19105/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Biotecnología - Departament de Biotecnologia es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Conservación y Mejora de la Agrodiversidad Valenciana - Institut Universitari de Conservació i Millora de l'Agrodiversitat Valenciana es_ES
dc.description.bibliographicCitation Mangino, G.; Plazas Ávila, MDLO.; Vilanova Navarro, S.; Prohens Tomás, J.; Gramazio, P. (2020). Performance of a Set of Eggplant (Solanum melongena) Lines With Introgressions From Its Wild Relative S. incanum Under Open Field and Screenhouse Conditions and Detection of QTLs. Agronomy. 10(4):1-15. https://doi.org/10.3390/agronomy10040467 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/agronomy10040467 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 15 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 10 es_ES
dc.description.issue 4 es_ES
dc.identifier.eissn 2073-4395 es_ES
dc.relation.pasarela S\431034 es_ES
dc.contributor.funder Government of Norway es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Crop Trust es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder European Commission es_ES
dc.contributor.funder Universitat Politècnica de València es_ES
dc.contributor.funder Japan Society for the Promotion of Science es_ES
dc.contributor.funder Ministerio de Economía, Industria y Competitividad es_ES
dc.description.references FAOSTAThttp://www.fao.org/faostat/ es_ES
dc.description.references Gebhardt, C. (2016). The historical role of species from the Solanaceae plant family in genetic research. Theoretical and Applied Genetics, 129(12), 2281-2294. doi:10.1007/s00122-016-2804-1 es_ES
dc.description.references Hirakawa, H., Shirasawa, K., Miyatake, K., Nunome, T., Negoro, S., Ohyama, A., … Fukuoka, H. (2014). Draft Genome Sequence of Eggplant (Solanum melongena L.): the Representative Solanum Species Indigenous to the Old World. DNA Research, 21(6), 649-660. doi:10.1093/dnares/dsu027 es_ES
dc.description.references Barchi, L., Pietrella, M., Venturini, L., Minio, A., Toppino, L., Acquadro, A., … Rotino, G. L. (2019). A chromosome-anchored eggplant genome sequence reveals key events in Solanaceae evolution. Scientific Reports, 9(1). doi:10.1038/s41598-019-47985-w es_ES
dc.description.references Gramazio, P., Yan, H., Hasing, T., Vilanova, S., Prohens, J., & Bombarely, A. (2019). Whole-Genome Resequencing of Seven Eggplant (Solanum melongena) and One Wild Relative (S. incanum) Accessions Provides New Insights and Breeding Tools for Eggplant Enhancement. Frontiers in Plant Science, 10. doi:10.3389/fpls.2019.01220 es_ES
dc.description.references GRAMAZIO, P., PROHENS, J., PLAZAS, M., MANGINO, G., HERRAIZ, F. J., GARCÍA-FORTEA, E., & VILANOVA, S. (2018). Genomic Tools for the Enhancement of Vegetable Crops: A Case in Eggplant. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 46(1), 1-13. doi:10.15835/nbha46110936 es_ES
dc.description.references Frary, A., Frary, A., Daunay, M.-C., Huvenaars, K., Mank, R., & Doğanlar, S. (2014). QTL hotspots in eggplant (Solanum melongena) detected with a high resolution map and CIM analysis. Euphytica, 197(2), 211-228. doi:10.1007/s10681-013-1060-6 es_ES
dc.description.references Portis, E., Cericola, F., Barchi, L., Toppino, L., Acciarri, N., Pulcini, L., … Rotino, G. L. (2015). Association Mapping for Fruit, Plant and Leaf Morphology Traits in Eggplant. PLOS ONE, 10(8), e0135200. doi:10.1371/journal.pone.0135200 es_ES
dc.description.references Toppino, L., Valè, G., & Rotino, G. L. (2008). Inheritance of Fusarium wilt resistance introgressed from Solanum aethiopicum Gilo and Aculeatum groups into cultivated eggplant (S. melongena) and development of associated PCR-based markers. Molecular Breeding, 22(2), 237-250. doi:10.1007/s11032-008-9170-x es_ES
dc.description.references Liu, J., Zheng, Z., Zhou, X., Feng, C., & Zhuang, Y. (2014). Improving the resistance of eggplant (Solanum melongena) to Verticillium wilt using wild species Solanum linnaeanum. Euphytica, 201(3), 463-469. doi:10.1007/s10681-014-1234-x es_ES
dc.description.references Kouassi, B., Prohens, J., Gramazio, P., Kouassi, A. B., Vilanova, S., Galán-Ávila, A., … Plazas, M. (2016). Development of backcross generations and new interspecific hybrid combinations for introgression breeding in eggplant (Solanum melongena). Scientia Horticulturae, 213, 199-207. doi:10.1016/j.scienta.2016.10.039 es_ES
dc.description.references Plazas, M., Vilanova, S., Gramazio, P., Rodríguez-Burruezo, A., Fita, A., Herraiz, F. J., … Prohens, J. (2016). Interspecific Hybridization between Eggplant and Wild Relatives from Different Genepools. Journal of the American Society for Horticultural Science, 141(1), 34-44. doi:10.21273/jashs.141.1.34 es_ES
dc.description.references García-Fortea, E., Gramazio, P., Vilanova, S., Fita, A., Mangino, G., Villanueva, G., … Plazas, M. (2019). First successful backcrossing towards eggplant (Solanum melongena) of a New World species, the silverleaf nightshade (S. elaeagnifolium), and characterization of interspecific hybrids and backcrosses. Scientia Horticulturae, 246, 563-573. doi:10.1016/j.scienta.2018.11.018 es_ES
dc.description.references Gramazio, P., Prohens, J., Plazas, M., Mangino, G., Herraiz, F. J., & Vilanova, S. (2017). Development and Genetic Characterization of Advanced Backcross Materials and An Introgression Line Population of Solanum incanum in a S. melongena Background. Frontiers in Plant Science, 8. doi:10.3389/fpls.2017.01477 es_ES
dc.description.references Syfert, M. M., Castañeda-Álvarez, N. P., Khoury, C. K., Särkinen, T., Sosa, C. C., Achicanoy, H. A., … Knapp, S. (2016). Crop wild relatives of the brinjal eggplant (Solanum melongena): Poorly represented in genebanks and many species at risk of extinction. American Journal of Botany, 103(4), 635-651. doi:10.3732/ajb.1500539 es_ES
dc.description.references Knapp, S., Vorontsova, M. S., & Prohens, J. (2013). Wild Relatives of the Eggplant (Solanum melongena L.: Solanaceae): New Understanding of Species Names in a Complex Group. PLoS ONE, 8(2), e57039. doi:10.1371/journal.pone.0057039 es_ES
dc.description.references Stommel, J. R., & Whitaker, B. D. (2003). Phenolic Acid Content and Composition of Eggplant Fruit in a Germplasm Core Subset. Journal of the American Society for Horticultural Science, 128(5), 704-710. doi:10.21273/jashs.128.5.0704 es_ES
dc.description.references Ma, C., Dastmalchi, K., Whitaker, B. D., & Kennelly, E. J. (2011). Two New Antioxidant Malonated Caffeoylquinic Acid Isomers in Fruits of Wild Eggplant Relatives. Journal of Agricultural and Food Chemistry, 59(17), 9645-9651. doi:10.1021/jf202028y es_ES
dc.description.references Prohens, J., Whitaker, B. D., Plazas, M., Vilanova, S., Hurtado, M., Blasco, M., … Stommel, J. R. (2013). Genetic diversity in morphological characters and phenolic acids content resulting from an interspecific cross between eggplant,Solanum melongena, and its wild ancestor (S. incanum). Annals of Applied Biology, 162(2), 242-257. doi:10.1111/aab.12017 es_ES
dc.description.references Meyer, R. S., Whitaker, B. D., Little, D. P., Wu, S.-B., Kennelly, E. J., Long, C.-L., & Litt, A. (2015). Parallel reductions in phenolic constituents resulting from the domestication of eggplant. Phytochemistry, 115, 194-206. doi:10.1016/j.phytochem.2015.02.006 es_ES
dc.description.references Taher, D., Solberg, S. Ø., Prohens, J., Chou, Y., Rakha, M., & Wu, T. (2017). World Vegetable Center Eggplant Collection: Origin, Composition, Seed Dissemination and Utilization in Breeding. Frontiers in Plant Science, 8. doi:10.3389/fpls.2017.01484 es_ES
dc.description.references Gisbert, C., Prohens, J., Raigón, M. D., Stommel, J. R., & Nuez, F. (2011). Eggplant relatives as sources of variation for developing new rootstocks: Effects of grafting on eggplant yield and fruit apparent quality and composition. Scientia Horticulturae, 128(1), 14-22. doi:10.1016/j.scienta.2010.12.007 es_ES
dc.description.references Salas, P., Prohens, J., & Seguí-Simarro, J. M. (2011). Evaluation of androgenic competence through anther culture in common eggplant and related species. Euphytica, 182(2). doi:10.1007/s10681-011-0490-2 es_ES
dc.description.references Gramazio, P., Prohens, J., Plazas, M., Andújar, I., Herraiz, F. J., Castillo, E., … Vilanova, S. (2014). Location of chlorogenic acid biosynthesis pathway and polyphenol oxidase genes in a new interspecific anchored linkage map of eggplant. BMC Plant Biology, 14(1). doi:10.1186/s12870-014-0350-z es_ES
dc.description.references Gramazio, P., Blanca, J., Ziarsolo, P., Herraiz, F. J., Plazas, M., Prohens, J., & Vilanova, S. (2016). Transcriptome analysis and molecular marker discovery in Solanum incanum and S. aethiopicum, two close relatives of the common eggplant (Solanum melongena) with interest for breeding. BMC Genomics, 17(1). doi:10.1186/s12864-016-2631-4 es_ES
dc.description.references Gramazio, P., Prohens, J., Borràs, D., Plazas, M., Herraiz, F. J., & Vilanova, S. (2017). Comparison of transcriptome-derived simple sequence repeat (SSR) and single nucleotide polymorphism (SNP) markers for genetic fingerprinting, diversity evaluation, and establishment of relationships in eggplants. Euphytica, 213(12). doi:10.1007/s10681-017-2057-3 es_ES
dc.description.references Dempewolf, H., Eastwood, R. J., Guarino, L., Khoury, C. K., Müller, J. V., & Toll, J. (2014). Adapting Agriculture to Climate Change: A Global Initiative to Collect, Conserve, and Use Crop Wild Relatives. Agroecology and Sustainable Food Systems, 38(4), 369-377. doi:10.1080/21683565.2013.870629 es_ES
dc.description.references Prohens, J., Gramazio, P., Plazas, M., Dempewolf, H., Kilian, B., Díez, M. J., … Vilanova, S. (2017). Introgressiomics: a new approach for using crop wild relatives in breeding for adaptation to climate change. Euphytica, 213(7). doi:10.1007/s10681-017-1938-9 es_ES
dc.description.references Eshed, Y., & Zamir, D. (1994). A genomic library of Lycopersicon pennellii in L. esculentum: A tool for fine mapping of genes. Euphytica, 79(3), 175-179. doi:10.1007/bf00022516 es_ES
dc.description.references Zamir, D. (2001). Improving plant breeding with exotic genetic libraries. Nature Reviews Genetics, 2(12), 983-989. doi:10.1038/35103590 es_ES
dc.description.references Eduardo, I., Arús, P., & Monforte, A. J. (2005). Development of a genomic library of near isogenic lines (NILs) in melon (Cucumis melo L.) from the exotic accession PI161375. Theoretical and Applied Genetics, 112(1), 139-148. doi:10.1007/s00122-005-0116-y es_ES
dc.description.references Eshed, Y., & Zamir, D. (1995). An introgression line population of Lycopersicon pennellii in the cultivated tomato enables the identification and fine mapping of yield-associated QTL. Genetics, 141(3), 1147-1162. doi:10.1093/genetics/141.3.1147 es_ES
dc.description.references Alonso-Blanco, C., Koornneef, M., & van Ooijen, J. W. (s. f.). QTL Analysis. Arabidopsis Protocols, 79-100. doi:10.1385/1-59745-003-0:79 es_ES
dc.description.references Gur, A., & Zamir, D. (2015). Mendelizing all Components of a Pyramid of Three Yield QTL in Tomato. Frontiers in Plant Science, 6. doi:10.3389/fpls.2015.01096 es_ES
dc.description.references Tanksley, S. D., & Nelson, J. C. (1996). Advanced backcross QTL analysis: a method for the simultaneous discovery and transfer of valuable QTLs from unadapted germplasm into elite breeding lines. Theoretical and Applied Genetics, 92(2), 191-203. doi:10.1007/bf00223376 es_ES
dc.description.references Ashikari, M., & Matsuoka, M. (2006). Identification, isolation and pyramiding of quantitative trait loci for rice breeding. Trends in Plant Science, 11(7), 344-350. doi:10.1016/j.tplants.2006.05.008 es_ES
dc.description.references Calafiore, R., Aliberti, A., Ruggieri, V., Olivieri, F., Rigano, M. M., & Barone, A. (2019). Phenotypic and Molecular Selection of a Superior Solanum pennellii Introgression Sub-Line Suitable for Improving Quality Traits of Cultivated Tomatoes. Frontiers in Plant Science, 10. doi:10.3389/fpls.2019.00190 es_ES
dc.description.references Eshed, Y., & Zamir, D. (1996). Less-Than-Additive Epistatic Interactions of Quantitative Trait Loci in Tomato. Genetics, 143(4), 1807-1817. doi:10.1093/genetics/143.4.1807 es_ES
dc.description.references Jena, K. K., Kochert, G., & Khush, G. S. (1992). RFLP analysis of rice (Oryza sativa L.) introgression lines. Theoretical and Applied Genetics, 84-84(5-6), 608-616. doi:10.1007/bf00224159 es_ES
dc.description.references Pestsova, E. G., Börner, A., & Röder, M. S. (2004). Development of a Set of Triticum Aestivum-Aegilops Tauschii Introgression Lines. Hereditas, 135(2-3), 139-143. doi:10.1111/j.1601-5223.2001.00139.x es_ES
dc.description.references Szalma, S. J., Hostert, B. M., LeDeaux, J. R., Stuber, C. W., & Holland, J. B. (2007). QTL mapping with near-isogenic lines in maize. Theoretical and Applied Genetics, 114(7), 1211-1228. doi:10.1007/s00122-007-0512-6 es_ES
dc.description.references Eshed, Y., Abu-Abied, M., Saranga, Y., & Zamir, D. (1992). Lycopersicon esculentum lines containing small overlapping introgressions from L. pennellii. Theoretical and Applied Genetics, 83(8), 1027-1034. doi:10.1007/bf00232968 es_ES
dc.description.references Monforte, A. J., & Tanksley, S. D. (2000). Development of a set of near isogenic and backcross recombinant inbred lines containing most of the Lycopersicon hirsutum genome in a L. esculentum genetic background: A tool for gene mapping and gene discovery. Genome, 43(5), 803-813. doi:10.1139/g00-043 es_ES
dc.description.references Chetelat, R. T., Qin, X., Tan, M., Burkart‐Waco, D., Moritama, Y., Huo, X., … Pertuzé, R. (2019). Introgression lines of Solanum sitiens , a wild nightshade of the Atacama Desert, in the genome of cultivated tomato. The Plant Journal, 100(4), 836-850. doi:10.1111/tpj.14460 es_ES
dc.description.references Schauer, N., Semel, Y., Roessner, U., Gur, A., Balbo, I., Carrari, F., … Fernie, A. R. (2006). Comprehensive metabolic profiling and phenotyping of interspecific introgression lines for tomato improvement. Nature Biotechnology, 24(4), 447-454. doi:10.1038/nbt1192 es_ES
dc.description.references Rigano, M. M., Raiola, A., Tenore, G. C., Monti, D. M., Del Giudice, R., Frusciante, L., & Barone, A. (2014). Quantitative Trait Loci Pyramiding Can Improve the Nutritional Potential of Tomato (Solanum lycopersicum) Fruits. Journal of Agricultural and Food Chemistry, 62(47), 11519-11527. doi:10.1021/jf502573n es_ES
dc.description.references Alseekh, S., Tohge, T., Wendenberg, R., Scossa, F., Omranian, N., Li, J., … Fernie, A. R. (2015). Identification and Mode of Inheritance of Quantitative Trait Loci for Secondary Metabolite Abundance in Tomato. The Plant Cell, 27(3), 485-512. doi:10.1105/tpc.114.132266 es_ES
dc.description.references Krause, K., Johnsen, H. R., Pielach, A., Lund, L., Fischer, K., & Rose, J. K. C. (2017). Identification of tomato introgression lines with enhanced susceptibility or resistance to infection by parasitic giant dodder ( Cuscuta reflexa ). Physiologia Plantarum, 162(2), 205-218. doi:10.1111/ppl.12660 es_ES
dc.description.references Salvi, S., Corneti, S., Bellotti, M., Carraro, N., Sanguineti, M. C., Castelletti, S., & Tuberosa, R. (2011). Genetic dissection of maize phenology using an intraspecific introgression library. BMC Plant Biology, 11(1), 4. doi:10.1186/1471-2229-11-4 es_ES
dc.description.references Ma, X., Fu, Y., Zhao, X., Jiang, L., Zhu, Z., Gu, P., … Tan, L. (2016). Genomic structure analysis of a set of Oryza nivara introgression lines and identification of yield-associated QTLs using whole-genome resequencing. Scientific Reports, 6(1). doi:10.1038/srep27425 es_ES
dc.description.references Qiu, X., Chen, K., Lv, W., Ou, X., Zhu, Y., Xing, D., … Li, Z. (2017). Examining two sets of introgression lines reveals background-independent and stably expressed QTL that improve grain appearance quality in rice (Oryza sativa L.). Theoretical and Applied Genetics, 130(5), 951-967. doi:10.1007/s00122-017-2862-z es_ES
dc.description.references De Leon, T. B., Linscombe, S., & Subudhi, P. K. (2017). Identification and validation of QTLs for seedling salinity tolerance in introgression lines of a salt tolerant rice landrace ‘Pokkali’. PLOS ONE, 12(4), e0175361. doi:10.1371/journal.pone.0175361 es_ES
dc.description.references Honsdorf, N., March, T. J., & Pillen, K. (2017). QTL controlling grain filling under terminal drought stress in a set of wild barley introgression lines. PLOS ONE, 12(10), e0185983. doi:10.1371/journal.pone.0185983 es_ES
dc.description.references Qin, G., Nguyen, H. M., Luu, S. N., Wang, Y., & Zhang, Z. (2018). Construction of introgression lines of Oryza rufipogon and evaluation of important agronomic traits. Theoretical and Applied Genetics, 132(2), 543-553. doi:10.1007/s00122-018-3241-0 es_ES
dc.description.references Zhao, X., Daygon, V. D., McNally, K. L., Hamilton, R. S., Xie, F., Reinke, R. F., & Fitzgerald, M. A. (2015). Identification of stable QTLs causing chalk in rice grains in nine environments. Theoretical and Applied Genetics, 129(1), 141-153. doi:10.1007/s00122-015-2616-8 es_ES
dc.description.references Ranil, R. H. G., Niran, H. M. L., Plazas, M., Fonseka, R. M., Fonseka, H. H., Vilanova, S., … Prohens, J. (2015). Improving seed germination of the eggplant rootstock Solanum torvum by testing multiple factors using an orthogonal array design. Scientia Horticulturae, 193, 174-181. doi:10.1016/j.scienta.2015.07.030 es_ES
dc.description.references Balakrishnan, D., Surapaneni, M., Mesapogu, S., & Neelamraju, S. (2018). Development and use of chromosome segment substitution lines as a genetic resource for crop improvement. Theoretical and Applied Genetics, 132(1), 1-25. doi:10.1007/s00122-018-3219-y es_ES
dc.description.references Wang, J.-X., Gao, T.-G., & Knapp, S. (2008). Ancient Chinese Literature Reveals Pathways of Eggplant Domestication. Annals of Botany, 102(6), 891-897. doi:10.1093/aob/mcn179 es_ES
dc.description.references Page, A., Gibson, J., Meyer, R. S., & Chapman, M. A. (2019). Eggplant Domestication: Pervasive Gene Flow, Feralization, and Transcriptomic Divergence. Molecular Biology and Evolution, 36(7), 1359-1372. doi:10.1093/molbev/msz062 es_ES
dc.description.references Kaushik, P., Prohens, J., Vilanova, S., Gramazio, P., & Plazas, M. (2016). Phenotyping of Eggplant Wild Relatives and Interspecific Hybrids with Conventional and Phenomics Descriptors Provides Insight for Their Potential Utilization in Breeding. Frontiers in Plant Science, 7. doi:10.3389/fpls.2016.00677 es_ES
dc.description.references Prohens, J., Plazas, M., Raigón, M. D., Seguí-Simarro, J. M., Stommel, J. R., & Vilanova, S. (2012). Characterization of interspecific hybrids and first backcross generations from crosses between two cultivated eggplants (Solanum melongena and S. aethiopicum Kumba group) and implications for eggplant breeding. Euphytica, 186(2), 517-538. doi:10.1007/s10681-012-0652-x es_ES
dc.description.references Frary, A., Nesbitt, T. C., Frary, A., Grandillo, S., Knaap, E. van der, Cong, B., … Tanksley, S. D. (2000). fw2.2  : A Quantitative Trait Locus Key to the Evolution of Tomato Fruit Size. Science, 289(5476), 85-88. doi:10.1126/science.289.5476.85 es_ES
dc.description.references Schouten, H. J., Tikunov, Y., Verkerke, W., Finkers, R., Bovy, A., Bai, Y., & Visser, R. G. F. (2019). Breeding Has Increased the Diversity of Cultivated Tomato in The Netherlands. Frontiers in Plant Science, 10. doi:10.3389/fpls.2019.01606 es_ES
dc.description.references Kearsey, M. J., & Farquhar, A. G. L. (1998). QTL analysis in plants; where are we now? Heredity, 80(2), 137-142. doi:10.1046/j.1365-2540.1998.00500.x es_ES
dc.description.references Frary, A., Doganlar, S., Daunay, M. C., & Tanksley, S. D. (2003). QTL analysis of morphological traits in eggplant and implications for conservation of gene function during evolution of solanaceous species. Theoretical and Applied Genetics, 107(2), 359-370. doi:10.1007/s00122-003-1257-5 es_ES
dc.description.references Fassio, C., Cautin, R., Pérez-Donoso, A., Bonomelli, C., & Castro, M. (2016). Propagation Techniques and Grafting Modify the Morphological Traits of Roots and Biomass Allocation in Avocado Trees. HortTechnology, 26(1), 63-69. doi:10.21273/horttech.26.1.63 es_ES
dc.description.references Chen, K.-Y., & Tanksley, S. D. (2004). High-Resolution Mapping and Functional Analysis of se2.1. Genetics, 168(3), 1563-1573. doi:10.1534/genetics.103.022558 es_ES
dc.description.references Xu, J., Driedonks, N., Rutten, M. J. M., Vriezen, W. H., de Boer, G.-J., & Rieu, I. (2017). Mapping quantitative trait loci for heat tolerance of reproductive traits in tomato (Solanum lycopersicum). Molecular Breeding, 37(5). doi:10.1007/s11032-017-0664-2 es_ES
dc.description.references Portis, E., Barchi, L., Toppino, L., Lanteri, S., Acciarri, N., Felicioni, N., … Rotino, G. L. (2014). QTL Mapping in Eggplant Reveals Clusters of Yield-Related Loci and Orthology with the Tomato Genome. PLoS ONE, 9(2), e89499. doi:10.1371/journal.pone.0089499 es_ES
dc.description.references Grandillo, S., Ku, H. M., & Tanksley, S. D. (1999). Identifying the loci responsible for natural variation in fruit size and shape in tomato. Theoretical and Applied Genetics, 99(6), 978-987. doi:10.1007/s001220051405 es_ES
dc.description.references Illa-Berenguer, E., Van Houten, J., Huang, Z., & van der Knaap, E. (2015). Rapid and reliable identification of tomato fruit weight and locule number loci by QTL-seq. Theoretical and Applied Genetics, 128(7), 1329-1342. doi:10.1007/s00122-015-2509-x es_ES
dc.description.references Cambiaso, V., Gimenez, M. D., da Costa, J. H. P., Vazquez, D. V., Picardi, L. A., Pratta, G. R., & Rodríguez, G. R. (2019). Selected genome regions for fruit weight and shelf life in tomato RILs discernible by markers based on genomic sequence information. Breeding Science, 69(3), 447-454. doi:10.1270/jsbbs.19015 es_ES
dc.description.references Chakrabarti, M., Zhang, N., Sauvage, C., Munos, S., Blanca, J., Canizares, J., … van der Knaap, E. (2013). A cytochrome P450 regulates a domestication trait in cultivated tomato. Proceedings of the National Academy of Sciences, 110(42), 17125-17130. doi:10.1073/pnas.1307313110 es_ES
dc.description.references Mu, Q., Huang, Z., Chakrabarti, M., Illa-Berenguer, E., Liu, X., Wang, Y., … van der Knaap, E. (2017). Fruit weight is controlled by Cell Size Regulator encoding a novel protein that is expressed in maturing tomato fruits. PLOS Genetics, 13(8), e1006930. doi:10.1371/journal.pgen.1006930 es_ES
dc.subject.ods 02.- Poner fin al hambre, conseguir la seguridad alimentaria y una mejor nutrición, y promover la agricultura sostenible es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem