- -

Performance of a Set of Eggplant (Solanum melongena) Lines With Introgressions From Its Wild Relative S. incanum Under Open Field and Screenhouse Conditions and Detection of QTLs

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Performance of a Set of Eggplant (Solanum melongena) Lines With Introgressions From Its Wild Relative S. incanum Under Open Field and Screenhouse Conditions and Detection of QTLs

Mostrar el registro completo del ítem

Mangino, G.; Plazas Ávila, MDLO.; Vilanova Navarro, S.; Prohens Tomás, J.; Gramazio, P. (2020). Performance of a Set of Eggplant (Solanum melongena) Lines With Introgressions From Its Wild Relative S. incanum Under Open Field and Screenhouse Conditions and Detection of QTLs. Agronomy. 10(4):1-15. https://doi.org/10.3390/agronomy10040467

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/166996

Ficheros en el ítem

Metadatos del ítem

Título: Performance of a Set of Eggplant (Solanum melongena) Lines With Introgressions From Its Wild Relative S. incanum Under Open Field and Screenhouse Conditions and Detection of QTLs
Autor: Mangino, Giulio Plazas Ávila, María de la O Vilanova Navarro, Santiago Prohens Tomás, Jaime Gramazio, Pietro
Entidad UPV: Universitat Politècnica de València. Departamento de Biotecnología - Departament de Biotecnologia
Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes
Universitat Politècnica de València. Instituto Universitario de Conservación y Mejora de la Agrodiversidad Valenciana - Institut Universitari de Conservació i Millora de l'Agrodiversitat Valenciana
Fecha difusión:
Resumen:
[EN] Introgression lines (ILs) of eggplant (Solanum melongena) represent a resource of high value for breeding and the genetic analysis of important traits. We have conducted a phenotypic evaluation in two environments ...[+]
Palabras clave: Solanum melongena , S. incanum , Introgression lines , Stable QTL analysis , Agronomic traits , G x E interaction , Synteny
Derechos de uso: Reconocimiento (by)
Fuente:
Agronomy. (eissn: 2073-4395 )
DOI: 10.3390/agronomy10040467
Editorial:
MDPI
Versión del editor: https://doi.org/10.3390/agronomy10040467
Código del Proyecto:
info:eu-repo/grantAgreement/EC/H2020/677379/EU/Linking genetic resources, genomes and phenotypes of Solanaceous crops/
...[+]
info:eu-repo/grantAgreement/EC/H2020/677379/EU/Linking genetic resources, genomes and phenotypes of Solanaceous crops/
info:eu-repo/grantAgreement/JSPS//FY2019/
info:eu-repo/grantAgreement/UPV//PAID-06-18/
info:eu-repo/grantAgreement/MINECO//AGL2015-64755-R/ES/MEJORA GENETICA DE LA CALIDAD FUNCIONAL Y APARENTE DE LA BERENJENA/
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-094592-B-I00/ES/INTROGRESION DE TOLERANCIA A LA SEQUIA PROCEDENTE DE ESPECIES SILVESTRES PARA LA MEJORA GENETICA DE LA BERENJENA/
info:eu-repo/grantAgreement/GVA//GRISOLIAP%2F2016%2F012/
info:eu-repo/grantAgreement/JSPS//P19105/
[-]
Agradecimientos:
This work was undertaken as part of the initiative "Adapting Agriculture to Climate Change: Collecting, Protecting, and Preparing Crop Wild Relatives", which is supported by the Government of Norway. The project is managed ...[+]
Tipo: Artículo

References

FAOSTAThttp://www.fao.org/faostat/

Gebhardt, C. (2016). The historical role of species from the Solanaceae plant family in genetic research. Theoretical and Applied Genetics, 129(12), 2281-2294. doi:10.1007/s00122-016-2804-1

Hirakawa, H., Shirasawa, K., Miyatake, K., Nunome, T., Negoro, S., Ohyama, A., … Fukuoka, H. (2014). Draft Genome Sequence of Eggplant (Solanum melongena L.): the Representative Solanum Species Indigenous to the Old World. DNA Research, 21(6), 649-660. doi:10.1093/dnares/dsu027 [+]
FAOSTAThttp://www.fao.org/faostat/

Gebhardt, C. (2016). The historical role of species from the Solanaceae plant family in genetic research. Theoretical and Applied Genetics, 129(12), 2281-2294. doi:10.1007/s00122-016-2804-1

Hirakawa, H., Shirasawa, K., Miyatake, K., Nunome, T., Negoro, S., Ohyama, A., … Fukuoka, H. (2014). Draft Genome Sequence of Eggplant (Solanum melongena L.): the Representative Solanum Species Indigenous to the Old World. DNA Research, 21(6), 649-660. doi:10.1093/dnares/dsu027

Barchi, L., Pietrella, M., Venturini, L., Minio, A., Toppino, L., Acquadro, A., … Rotino, G. L. (2019). A chromosome-anchored eggplant genome sequence reveals key events in Solanaceae evolution. Scientific Reports, 9(1). doi:10.1038/s41598-019-47985-w

Gramazio, P., Yan, H., Hasing, T., Vilanova, S., Prohens, J., & Bombarely, A. (2019). Whole-Genome Resequencing of Seven Eggplant (Solanum melongena) and One Wild Relative (S. incanum) Accessions Provides New Insights and Breeding Tools for Eggplant Enhancement. Frontiers in Plant Science, 10. doi:10.3389/fpls.2019.01220

GRAMAZIO, P., PROHENS, J., PLAZAS, M., MANGINO, G., HERRAIZ, F. J., GARCÍA-FORTEA, E., & VILANOVA, S. (2018). Genomic Tools for the Enhancement of Vegetable Crops: A Case in Eggplant. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 46(1), 1-13. doi:10.15835/nbha46110936

Frary, A., Frary, A., Daunay, M.-C., Huvenaars, K., Mank, R., & Doğanlar, S. (2014). QTL hotspots in eggplant (Solanum melongena) detected with a high resolution map and CIM analysis. Euphytica, 197(2), 211-228. doi:10.1007/s10681-013-1060-6

Portis, E., Cericola, F., Barchi, L., Toppino, L., Acciarri, N., Pulcini, L., … Rotino, G. L. (2015). Association Mapping for Fruit, Plant and Leaf Morphology Traits in Eggplant. PLOS ONE, 10(8), e0135200. doi:10.1371/journal.pone.0135200

Toppino, L., Valè, G., & Rotino, G. L. (2008). Inheritance of Fusarium wilt resistance introgressed from Solanum aethiopicum Gilo and Aculeatum groups into cultivated eggplant (S. melongena) and development of associated PCR-based markers. Molecular Breeding, 22(2), 237-250. doi:10.1007/s11032-008-9170-x

Liu, J., Zheng, Z., Zhou, X., Feng, C., & Zhuang, Y. (2014). Improving the resistance of eggplant (Solanum melongena) to Verticillium wilt using wild species Solanum linnaeanum. Euphytica, 201(3), 463-469. doi:10.1007/s10681-014-1234-x

Kouassi, B., Prohens, J., Gramazio, P., Kouassi, A. B., Vilanova, S., Galán-Ávila, A., … Plazas, M. (2016). Development of backcross generations and new interspecific hybrid combinations for introgression breeding in eggplant (Solanum melongena). Scientia Horticulturae, 213, 199-207. doi:10.1016/j.scienta.2016.10.039

Plazas, M., Vilanova, S., Gramazio, P., Rodríguez-Burruezo, A., Fita, A., Herraiz, F. J., … Prohens, J. (2016). Interspecific Hybridization between Eggplant and Wild Relatives from Different Genepools. Journal of the American Society for Horticultural Science, 141(1), 34-44. doi:10.21273/jashs.141.1.34

García-Fortea, E., Gramazio, P., Vilanova, S., Fita, A., Mangino, G., Villanueva, G., … Plazas, M. (2019). First successful backcrossing towards eggplant (Solanum melongena) of a New World species, the silverleaf nightshade (S. elaeagnifolium), and characterization of interspecific hybrids and backcrosses. Scientia Horticulturae, 246, 563-573. doi:10.1016/j.scienta.2018.11.018

Gramazio, P., Prohens, J., Plazas, M., Mangino, G., Herraiz, F. J., & Vilanova, S. (2017). Development and Genetic Characterization of Advanced Backcross Materials and An Introgression Line Population of Solanum incanum in a S. melongena Background. Frontiers in Plant Science, 8. doi:10.3389/fpls.2017.01477

Syfert, M. M., Castañeda-Álvarez, N. P., Khoury, C. K., Särkinen, T., Sosa, C. C., Achicanoy, H. A., … Knapp, S. (2016). Crop wild relatives of the brinjal eggplant (Solanum melongena): Poorly represented in genebanks and many species at risk of extinction. American Journal of Botany, 103(4), 635-651. doi:10.3732/ajb.1500539

Knapp, S., Vorontsova, M. S., & Prohens, J. (2013). Wild Relatives of the Eggplant (Solanum melongena L.: Solanaceae): New Understanding of Species Names in a Complex Group. PLoS ONE, 8(2), e57039. doi:10.1371/journal.pone.0057039

Stommel, J. R., & Whitaker, B. D. (2003). Phenolic Acid Content and Composition of Eggplant Fruit in a Germplasm Core Subset. Journal of the American Society for Horticultural Science, 128(5), 704-710. doi:10.21273/jashs.128.5.0704

Ma, C., Dastmalchi, K., Whitaker, B. D., & Kennelly, E. J. (2011). Two New Antioxidant Malonated Caffeoylquinic Acid Isomers in Fruits of Wild Eggplant Relatives. Journal of Agricultural and Food Chemistry, 59(17), 9645-9651. doi:10.1021/jf202028y

Prohens, J., Whitaker, B. D., Plazas, M., Vilanova, S., Hurtado, M., Blasco, M., … Stommel, J. R. (2013). Genetic diversity in morphological characters and phenolic acids content resulting from an interspecific cross between eggplant,Solanum melongena, and its wild ancestor (S. incanum). Annals of Applied Biology, 162(2), 242-257. doi:10.1111/aab.12017

Meyer, R. S., Whitaker, B. D., Little, D. P., Wu, S.-B., Kennelly, E. J., Long, C.-L., & Litt, A. (2015). Parallel reductions in phenolic constituents resulting from the domestication of eggplant. Phytochemistry, 115, 194-206. doi:10.1016/j.phytochem.2015.02.006

Taher, D., Solberg, S. Ø., Prohens, J., Chou, Y., Rakha, M., & Wu, T. (2017). World Vegetable Center Eggplant Collection: Origin, Composition, Seed Dissemination and Utilization in Breeding. Frontiers in Plant Science, 8. doi:10.3389/fpls.2017.01484

Gisbert, C., Prohens, J., Raigón, M. D., Stommel, J. R., & Nuez, F. (2011). Eggplant relatives as sources of variation for developing new rootstocks: Effects of grafting on eggplant yield and fruit apparent quality and composition. Scientia Horticulturae, 128(1), 14-22. doi:10.1016/j.scienta.2010.12.007

Salas, P., Prohens, J., & Seguí-Simarro, J. M. (2011). Evaluation of androgenic competence through anther culture in common eggplant and related species. Euphytica, 182(2). doi:10.1007/s10681-011-0490-2

Gramazio, P., Prohens, J., Plazas, M., Andújar, I., Herraiz, F. J., Castillo, E., … Vilanova, S. (2014). Location of chlorogenic acid biosynthesis pathway and polyphenol oxidase genes in a new interspecific anchored linkage map of eggplant. BMC Plant Biology, 14(1). doi:10.1186/s12870-014-0350-z

Gramazio, P., Blanca, J., Ziarsolo, P., Herraiz, F. J., Plazas, M., Prohens, J., & Vilanova, S. (2016). Transcriptome analysis and molecular marker discovery in Solanum incanum and S. aethiopicum, two close relatives of the common eggplant (Solanum melongena) with interest for breeding. BMC Genomics, 17(1). doi:10.1186/s12864-016-2631-4

Gramazio, P., Prohens, J., Borràs, D., Plazas, M., Herraiz, F. J., & Vilanova, S. (2017). Comparison of transcriptome-derived simple sequence repeat (SSR) and single nucleotide polymorphism (SNP) markers for genetic fingerprinting, diversity evaluation, and establishment of relationships in eggplants. Euphytica, 213(12). doi:10.1007/s10681-017-2057-3

Dempewolf, H., Eastwood, R. J., Guarino, L., Khoury, C. K., Müller, J. V., & Toll, J. (2014). Adapting Agriculture to Climate Change: A Global Initiative to Collect, Conserve, and Use Crop Wild Relatives. Agroecology and Sustainable Food Systems, 38(4), 369-377. doi:10.1080/21683565.2013.870629

Prohens, J., Gramazio, P., Plazas, M., Dempewolf, H., Kilian, B., Díez, M. J., … Vilanova, S. (2017). Introgressiomics: a new approach for using crop wild relatives in breeding for adaptation to climate change. Euphytica, 213(7). doi:10.1007/s10681-017-1938-9

Eshed, Y., & Zamir, D. (1994). A genomic library of Lycopersicon pennellii in L. esculentum: A tool for fine mapping of genes. Euphytica, 79(3), 175-179. doi:10.1007/bf00022516

Zamir, D. (2001). Improving plant breeding with exotic genetic libraries. Nature Reviews Genetics, 2(12), 983-989. doi:10.1038/35103590

Eduardo, I., Arús, P., & Monforte, A. J. (2005). Development of a genomic library of near isogenic lines (NILs) in melon (Cucumis melo L.) from the exotic accession PI161375. Theoretical and Applied Genetics, 112(1), 139-148. doi:10.1007/s00122-005-0116-y

Eshed, Y., & Zamir, D. (1995). An introgression line population of Lycopersicon pennellii in the cultivated tomato enables the identification and fine mapping of yield-associated QTL. Genetics, 141(3), 1147-1162. doi:10.1093/genetics/141.3.1147

Alonso-Blanco, C., Koornneef, M., & van Ooijen, J. W. (s. f.). QTL Analysis. Arabidopsis Protocols, 79-100. doi:10.1385/1-59745-003-0:79

Gur, A., & Zamir, D. (2015). Mendelizing all Components of a Pyramid of Three Yield QTL in Tomato. Frontiers in Plant Science, 6. doi:10.3389/fpls.2015.01096

Tanksley, S. D., & Nelson, J. C. (1996). Advanced backcross QTL analysis: a method for the simultaneous discovery and transfer of valuable QTLs from unadapted germplasm into elite breeding lines. Theoretical and Applied Genetics, 92(2), 191-203. doi:10.1007/bf00223376

Ashikari, M., & Matsuoka, M. (2006). Identification, isolation and pyramiding of quantitative trait loci for rice breeding. Trends in Plant Science, 11(7), 344-350. doi:10.1016/j.tplants.2006.05.008

Calafiore, R., Aliberti, A., Ruggieri, V., Olivieri, F., Rigano, M. M., & Barone, A. (2019). Phenotypic and Molecular Selection of a Superior Solanum pennellii Introgression Sub-Line Suitable for Improving Quality Traits of Cultivated Tomatoes. Frontiers in Plant Science, 10. doi:10.3389/fpls.2019.00190

Eshed, Y., & Zamir, D. (1996). Less-Than-Additive Epistatic Interactions of Quantitative Trait Loci in Tomato. Genetics, 143(4), 1807-1817. doi:10.1093/genetics/143.4.1807

Jena, K. K., Kochert, G., & Khush, G. S. (1992). RFLP analysis of rice (Oryza sativa L.) introgression lines. Theoretical and Applied Genetics, 84-84(5-6), 608-616. doi:10.1007/bf00224159

Pestsova, E. G., Börner, A., & Röder, M. S. (2004). Development of a Set of Triticum Aestivum-Aegilops Tauschii Introgression Lines. Hereditas, 135(2-3), 139-143. doi:10.1111/j.1601-5223.2001.00139.x

Szalma, S. J., Hostert, B. M., LeDeaux, J. R., Stuber, C. W., & Holland, J. B. (2007). QTL mapping with near-isogenic lines in maize. Theoretical and Applied Genetics, 114(7), 1211-1228. doi:10.1007/s00122-007-0512-6

Eshed, Y., Abu-Abied, M., Saranga, Y., & Zamir, D. (1992). Lycopersicon esculentum lines containing small overlapping introgressions from L. pennellii. Theoretical and Applied Genetics, 83(8), 1027-1034. doi:10.1007/bf00232968

Monforte, A. J., & Tanksley, S. D. (2000). Development of a set of near isogenic and backcross recombinant inbred lines containing most of the Lycopersicon hirsutum genome in a L. esculentum genetic background: A tool for gene mapping and gene discovery. Genome, 43(5), 803-813. doi:10.1139/g00-043

Chetelat, R. T., Qin, X., Tan, M., Burkart‐Waco, D., Moritama, Y., Huo, X., … Pertuzé, R. (2019). Introgression lines of Solanum sitiens , a wild nightshade of the Atacama Desert, in the genome of cultivated tomato. The Plant Journal, 100(4), 836-850. doi:10.1111/tpj.14460

Schauer, N., Semel, Y., Roessner, U., Gur, A., Balbo, I., Carrari, F., … Fernie, A. R. (2006). Comprehensive metabolic profiling and phenotyping of interspecific introgression lines for tomato improvement. Nature Biotechnology, 24(4), 447-454. doi:10.1038/nbt1192

Rigano, M. M., Raiola, A., Tenore, G. C., Monti, D. M., Del Giudice, R., Frusciante, L., & Barone, A. (2014). Quantitative Trait Loci Pyramiding Can Improve the Nutritional Potential of Tomato (Solanum lycopersicum) Fruits. Journal of Agricultural and Food Chemistry, 62(47), 11519-11527. doi:10.1021/jf502573n

Alseekh, S., Tohge, T., Wendenberg, R., Scossa, F., Omranian, N., Li, J., … Fernie, A. R. (2015). Identification and Mode of Inheritance of Quantitative Trait Loci for Secondary Metabolite Abundance in Tomato. The Plant Cell, 27(3), 485-512. doi:10.1105/tpc.114.132266

Krause, K., Johnsen, H. R., Pielach, A., Lund, L., Fischer, K., & Rose, J. K. C. (2017). Identification of tomato introgression lines with enhanced susceptibility or resistance to infection by parasitic giant dodder ( Cuscuta reflexa ). Physiologia Plantarum, 162(2), 205-218. doi:10.1111/ppl.12660

Salvi, S., Corneti, S., Bellotti, M., Carraro, N., Sanguineti, M. C., Castelletti, S., & Tuberosa, R. (2011). Genetic dissection of maize phenology using an intraspecific introgression library. BMC Plant Biology, 11(1), 4. doi:10.1186/1471-2229-11-4

Ma, X., Fu, Y., Zhao, X., Jiang, L., Zhu, Z., Gu, P., … Tan, L. (2016). Genomic structure analysis of a set of Oryza nivara introgression lines and identification of yield-associated QTLs using whole-genome resequencing. Scientific Reports, 6(1). doi:10.1038/srep27425

Qiu, X., Chen, K., Lv, W., Ou, X., Zhu, Y., Xing, D., … Li, Z. (2017). Examining two sets of introgression lines reveals background-independent and stably expressed QTL that improve grain appearance quality in rice (Oryza sativa L.). Theoretical and Applied Genetics, 130(5), 951-967. doi:10.1007/s00122-017-2862-z

De Leon, T. B., Linscombe, S., & Subudhi, P. K. (2017). Identification and validation of QTLs for seedling salinity tolerance in introgression lines of a salt tolerant rice landrace ‘Pokkali’. PLOS ONE, 12(4), e0175361. doi:10.1371/journal.pone.0175361

Honsdorf, N., March, T. J., & Pillen, K. (2017). QTL controlling grain filling under terminal drought stress in a set of wild barley introgression lines. PLOS ONE, 12(10), e0185983. doi:10.1371/journal.pone.0185983

Qin, G., Nguyen, H. M., Luu, S. N., Wang, Y., & Zhang, Z. (2018). Construction of introgression lines of Oryza rufipogon and evaluation of important agronomic traits. Theoretical and Applied Genetics, 132(2), 543-553. doi:10.1007/s00122-018-3241-0

Zhao, X., Daygon, V. D., McNally, K. L., Hamilton, R. S., Xie, F., Reinke, R. F., & Fitzgerald, M. A. (2015). Identification of stable QTLs causing chalk in rice grains in nine environments. Theoretical and Applied Genetics, 129(1), 141-153. doi:10.1007/s00122-015-2616-8

Ranil, R. H. G., Niran, H. M. L., Plazas, M., Fonseka, R. M., Fonseka, H. H., Vilanova, S., … Prohens, J. (2015). Improving seed germination of the eggplant rootstock Solanum torvum by testing multiple factors using an orthogonal array design. Scientia Horticulturae, 193, 174-181. doi:10.1016/j.scienta.2015.07.030

Balakrishnan, D., Surapaneni, M., Mesapogu, S., & Neelamraju, S. (2018). Development and use of chromosome segment substitution lines as a genetic resource for crop improvement. Theoretical and Applied Genetics, 132(1), 1-25. doi:10.1007/s00122-018-3219-y

Wang, J.-X., Gao, T.-G., & Knapp, S. (2008). Ancient Chinese Literature Reveals Pathways of Eggplant Domestication. Annals of Botany, 102(6), 891-897. doi:10.1093/aob/mcn179

Page, A., Gibson, J., Meyer, R. S., & Chapman, M. A. (2019). Eggplant Domestication: Pervasive Gene Flow, Feralization, and Transcriptomic Divergence. Molecular Biology and Evolution, 36(7), 1359-1372. doi:10.1093/molbev/msz062

Kaushik, P., Prohens, J., Vilanova, S., Gramazio, P., & Plazas, M. (2016). Phenotyping of Eggplant Wild Relatives and Interspecific Hybrids with Conventional and Phenomics Descriptors Provides Insight for Their Potential Utilization in Breeding. Frontiers in Plant Science, 7. doi:10.3389/fpls.2016.00677

Prohens, J., Plazas, M., Raigón, M. D., Seguí-Simarro, J. M., Stommel, J. R., & Vilanova, S. (2012). Characterization of interspecific hybrids and first backcross generations from crosses between two cultivated eggplants (Solanum melongena and S. aethiopicum Kumba group) and implications for eggplant breeding. Euphytica, 186(2), 517-538. doi:10.1007/s10681-012-0652-x

Frary, A., Nesbitt, T. C., Frary, A., Grandillo, S., Knaap, E. van der, Cong, B., … Tanksley, S. D. (2000). fw2.2  : A Quantitative Trait Locus Key to the Evolution of Tomato Fruit Size. Science, 289(5476), 85-88. doi:10.1126/science.289.5476.85

Schouten, H. J., Tikunov, Y., Verkerke, W., Finkers, R., Bovy, A., Bai, Y., & Visser, R. G. F. (2019). Breeding Has Increased the Diversity of Cultivated Tomato in The Netherlands. Frontiers in Plant Science, 10. doi:10.3389/fpls.2019.01606

Kearsey, M. J., & Farquhar, A. G. L. (1998). QTL analysis in plants; where are we now? Heredity, 80(2), 137-142. doi:10.1046/j.1365-2540.1998.00500.x

Frary, A., Doganlar, S., Daunay, M. C., & Tanksley, S. D. (2003). QTL analysis of morphological traits in eggplant and implications for conservation of gene function during evolution of solanaceous species. Theoretical and Applied Genetics, 107(2), 359-370. doi:10.1007/s00122-003-1257-5

Fassio, C., Cautin, R., Pérez-Donoso, A., Bonomelli, C., & Castro, M. (2016). Propagation Techniques and Grafting Modify the Morphological Traits of Roots and Biomass Allocation in Avocado Trees. HortTechnology, 26(1), 63-69. doi:10.21273/horttech.26.1.63

Chen, K.-Y., & Tanksley, S. D. (2004). High-Resolution Mapping and Functional Analysis of se2.1. Genetics, 168(3), 1563-1573. doi:10.1534/genetics.103.022558

Xu, J., Driedonks, N., Rutten, M. J. M., Vriezen, W. H., de Boer, G.-J., & Rieu, I. (2017). Mapping quantitative trait loci for heat tolerance of reproductive traits in tomato (Solanum lycopersicum). Molecular Breeding, 37(5). doi:10.1007/s11032-017-0664-2

Portis, E., Barchi, L., Toppino, L., Lanteri, S., Acciarri, N., Felicioni, N., … Rotino, G. L. (2014). QTL Mapping in Eggplant Reveals Clusters of Yield-Related Loci and Orthology with the Tomato Genome. PLoS ONE, 9(2), e89499. doi:10.1371/journal.pone.0089499

Grandillo, S., Ku, H. M., & Tanksley, S. D. (1999). Identifying the loci responsible for natural variation in fruit size and shape in tomato. Theoretical and Applied Genetics, 99(6), 978-987. doi:10.1007/s001220051405

Illa-Berenguer, E., Van Houten, J., Huang, Z., & van der Knaap, E. (2015). Rapid and reliable identification of tomato fruit weight and locule number loci by QTL-seq. Theoretical and Applied Genetics, 128(7), 1329-1342. doi:10.1007/s00122-015-2509-x

Cambiaso, V., Gimenez, M. D., da Costa, J. H. P., Vazquez, D. V., Picardi, L. A., Pratta, G. R., & Rodríguez, G. R. (2019). Selected genome regions for fruit weight and shelf life in tomato RILs discernible by markers based on genomic sequence information. Breeding Science, 69(3), 447-454. doi:10.1270/jsbbs.19015

Chakrabarti, M., Zhang, N., Sauvage, C., Munos, S., Blanca, J., Canizares, J., … van der Knaap, E. (2013). A cytochrome P450 regulates a domestication trait in cultivated tomato. Proceedings of the National Academy of Sciences, 110(42), 17125-17130. doi:10.1073/pnas.1307313110

Mu, Q., Huang, Z., Chakrabarti, M., Illa-Berenguer, E., Liu, X., Wang, Y., … van der Knaap, E. (2017). Fruit weight is controlled by Cell Size Regulator encoding a novel protein that is expressed in maturing tomato fruits. PLOS Genetics, 13(8), e1006930. doi:10.1371/journal.pgen.1006930

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem