- -

Attentional selection can be predicted by reinforcement learning of task-relevant stimulus features weighted by value-independent stickiness

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Attentional selection can be predicted by reinforcement learning of task-relevant stimulus features weighted by value-independent stickiness

Show full item record

Balcarras, M.; Ardid-Ramírez, JS.; Kaping, D.; Everling, S.; Womelsdorf, T. (2016). Attentional selection can be predicted by reinforcement learning of task-relevant stimulus features weighted by value-independent stickiness. Journal of Cognitive Neuroscience. 28(2):333-349. https://doi.org/10.1162/jocn_a_00894

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/167007

Files in this item

Item Metadata

Title: Attentional selection can be predicted by reinforcement learning of task-relevant stimulus features weighted by value-independent stickiness
Author: Balcarras, M. Ardid-Ramírez, Joan Salvador Kaping, D. Everling, S. Womelsdorf, T.
UPV Unit: Universitat Politècnica de València. Instituto de Investigación para la Gestión Integral de Zonas Costeras - Institut d'Investigació per a la Gestió Integral de Zones Costaneres
Issued date:
Abstract:
[EN] Attention includes processes that evaluate stimuli relevance, select the most relevant stimulus against less relevant stimuli, and bias choice behavior toward the selected information. It is not clear how these processes ...[+]
Subjects: Matching behavior , Economic choice , Frontal-Cortex , Reward , Decision , Information , Representations , Computations , Networks , Models
Copyrigths: Reserva de todos los derechos
Source:
Journal of Cognitive Neuroscience. (issn: 0898-929X )
DOI: 10.1162/jocn_a_00894
Publisher:
MIT Press
Publisher version: https://doi.org/10.1162/jocn_a_00894
Thanks:
This work was supported by grants from the Canadian Institutes of Health Research, the Natural Sciences and Engineering Research Council of Canada, and the Ontario Ministry of Economic Development and Innovation. We thank ...[+]
Type: Artículo

This item appears in the following Collection(s)

Show full item record