- -

Attentional selection can be predicted by reinforcement learning of task-relevant stimulus features weighted by value-independent stickiness

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Attentional selection can be predicted by reinforcement learning of task-relevant stimulus features weighted by value-independent stickiness

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Balcarras, M. es_ES
dc.contributor.author Ardid-Ramírez, Joan Salvador es_ES
dc.contributor.author Kaping, D. es_ES
dc.contributor.author Everling, S. es_ES
dc.contributor.author Womelsdorf, T. es_ES
dc.date.accessioned 2021-06-01T03:32:16Z
dc.date.available 2021-06-01T03:32:16Z
dc.date.issued 2016-02-01 es_ES
dc.identifier.issn 0898-929X es_ES
dc.identifier.uri http://hdl.handle.net/10251/167007
dc.description.abstract [EN] Attention includes processes that evaluate stimuli relevance, select the most relevant stimulus against less relevant stimuli, and bias choice behavior toward the selected information. It is not clear how these processes interact. Here, we captured these processes in a reinforcement learning framework applied to a feature-based attention task that required macaques to learn and update the value of stimulus features while ignoring nonrelevant sensory features, locations, and action plans. We found that value-based reinforcement learning mechanisms could account for feature-based attentional selection and choice behavior but required a value-independent stickiness selection process to explain selection errors while at asymptotic behavior. By comparing different reinforcement learning schemes, we found that trial-by-trial selections were best predicted by a model that only represents expected values for the task-relevant feature dimension, with nonrelevant stimulus features and action plans having only a marginal influence on covert selections. These findings show that attentional control subprocesses can be described by (1) the reinforcement learning of feature values within a restricted feature space that excludes irrelevant feature dimensions, (2) a stochastic selection process on feature-specific value representations, and (3) value-independent stickiness toward previous feature selections akin to perseveration in the motor domain. We speculate that these three mechanisms are implemented by distinct but interacting brain circuits and that the proposed formal account of feature-based stimulus selection will be important to understand how attentional subprocesses are implemented in primate brain networks. es_ES
dc.description.sponsorship This work was supported by grants from the Canadian Institutes of Health Research, the Natural Sciences and Engineering Research Council of Canada, and the Ontario Ministry of Economic Development and Innovation. We thank Johanna Stucke for her help with assisting with animal training and care. We thank anonymous reviewers for helpful comments on earlier versions of this manuscript. es_ES
dc.language Inglés es_ES
dc.publisher MIT Press es_ES
dc.relation.ispartof Journal of Cognitive Neuroscience es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Matching behavior es_ES
dc.subject Economic choice es_ES
dc.subject Frontal-Cortex es_ES
dc.subject Reward es_ES
dc.subject Decision es_ES
dc.subject Information es_ES
dc.subject Representations es_ES
dc.subject Computations es_ES
dc.subject Networks es_ES
dc.subject Models es_ES
dc.subject.classification FISICA APLICADA es_ES
dc.title Attentional selection can be predicted by reinforcement learning of task-relevant stimulus features weighted by value-independent stickiness es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1162/jocn_a_00894 es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto de Investigación para la Gestión Integral de Zonas Costeras - Institut d'Investigació per a la Gestió Integral de Zones Costaneres es_ES
dc.description.bibliographicCitation Balcarras, M.; Ardid-Ramírez, JS.; Kaping, D.; Everling, S.; Womelsdorf, T. (2016). Attentional selection can be predicted by reinforcement learning of task-relevant stimulus features weighted by value-independent stickiness. Journal of Cognitive Neuroscience. 28(2):333-349. https://doi.org/10.1162/jocn_a_00894 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1162/jocn_a_00894 es_ES
dc.description.upvformatpinicio 333 es_ES
dc.description.upvformatpfin 349 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 28 es_ES
dc.description.issue 2 es_ES
dc.identifier.pmid 26488586 es_ES
dc.relation.pasarela S\434979 es_ES
dc.contributor.funder Canadian Institutes of Health Research es_ES
dc.contributor.funder Ontario Ministry of Economic Development and Innovation es_ES
dc.contributor.funder Natural Sciences and Engineering Research Council of Canada es_ES
dc.description.references Ahn, W.-Y., Busemeyer, J. R., Wagenmakers, E.-J., & Stout, J. C. (2008). Comparison of Decision Learning Models Using the Generalization Criterion Method. Cognitive Science, 32(8), 1376-1402. doi:10.1080/03640210802352992 es_ES
dc.description.references Alexander, W. H. (2007). Shifting Attention Using a Temporal Difference Prediction Error and High-Dimensional Input. Adaptive Behavior, 15(2), 121-133. doi:10.1177/1059712307078663 es_ES
dc.description.references Anderson, B. A. (2013). A value-driven mechanism of attentional selection. Journal of Vision, 13(3), 7-7. doi:10.1167/13.3.7 es_ES
dc.description.references Anderson, B. A., Laurent, P. A., & Yantis, S. (2011). Value-driven attentional capture. Proceedings of the National Academy of Sciences, 108(25), 10367-10371. doi:10.1073/pnas.1104047108 es_ES
dc.description.references Ardid, S., Balcarras, M., & Womelsdorf, T. (2014). «Adaptive learning» as a mechanistic candidate for reaching optimal task-set representations flexibly. BMC Neuroscience, 15(S1). doi:10.1186/1471-2202-15-s1-p8 es_ES
dc.description.references Ardid, S., & Wang, X.-J. (2013). A Tweaking Principle for Executive Control: Neuronal Circuit Mechanism for Rule-Based Task Switching and Conflict Resolution. Journal of Neuroscience, 33(50), 19504-19517. doi:10.1523/jneurosci.1356-13.2013 es_ES
dc.description.references Asaad, W. F., & Eskandar, E. N. (2008). A flexible software tool for temporally-precise behavioral control in Matlab. Journal of Neuroscience Methods, 174(2), 245-258. doi:10.1016/j.jneumeth.2008.07.014 es_ES
dc.description.references Awh, E., Belopolsky, A. V., & Theeuwes, J. (2012). Top-down versus bottom-up attentional control: a failed theoretical dichotomy. Trends in Cognitive Sciences, 16(8), 437-443. doi:10.1016/j.tics.2012.06.010 es_ES
dc.description.references Cai, X., & Padoa-Schioppa, C. (2014). Contributions of Orbitofrontal and Lateral Prefrontal Cortices to Economic Choice and the Good-to-Action Transformation. Neuron, 81(5), 1140-1151. doi:10.1016/j.neuron.2014.01.008 es_ES
dc.description.references Chelazzi, L., Perlato, A., Santandrea, E., & Della Libera, C. (2013). Rewards teach visual selective attention. Vision Research, 85, 58-72. doi:10.1016/j.visres.2012.12.005 es_ES
dc.description.references Collins, A. G. E., & Frank, M. J. (2013). Cognitive control over learning: Creating, clustering, and generalizing task-set structure. Psychological Review, 120(1), 190-229. doi:10.1037/a0030852 es_ES
dc.description.references Dayan, P., & Berridge, K. C. (2014). Model-based and model-free Pavlovian reward learning: Revaluation, revision, and revelation. Cognitive, Affective, & Behavioral Neuroscience, 14(2), 473-492. doi:10.3758/s13415-014-0277-8 es_ES
dc.description.references Dayan, P., Kakade, S., & Montague, P. R. (2000). Learning and selective attention. Nature Neuroscience, 3(S11), 1218-1223. doi:10.1038/81504 es_ES
dc.description.references De Wit, S., Watson, P., Harsay, H. A., Cohen, M. X., van de Vijver, I., & Ridderinkhof, K. R. (2012). Corticostriatal Connectivity Underlies Individual Differences in the Balance between Habitual and Goal-Directed Action Control. Journal of Neuroscience, 32(35), 12066-12075. doi:10.1523/jneurosci.1088-12.2012 es_ES
dc.description.references Dehaene, S., & Changeux, J.-P. (2000). Reward-dependent learning in neuronal networks for planning and decision making. Cognition, emotion and autonomic responses: The integrative role of the prefrontal cortex and limbic structures, 217-229. doi:10.1016/s0079-6123(00)26016-0 es_ES
dc.description.references Della Libera, C., & Chelazzi, L. (2009). Learning to Attend and to Ignore Is a Matter of Gains and Losses. Psychological Science, 20(6), 778-784. doi:10.1111/j.1467-9280.2009.02360.x es_ES
dc.description.references Dolan, R. J., & Dayan, P. (2013). Goals and Habits in the Brain. Neuron, 80(2), 312-325. doi:10.1016/j.neuron.2013.09.007 es_ES
dc.description.references Donoso, M., Collins, A. G. E., & Koechlin, E. (2014). Foundations of human reasoning in the prefrontal cortex. Science, 344(6191), 1481-1486. doi:10.1126/science.1252254 es_ES
dc.description.references Fecteau, J. H., & Munoz, D. P. (2003). Exploring the consequences of the previous trial. Nature Reviews Neuroscience, 4(6), 435-443. doi:10.1038/nrn1114 es_ES
dc.description.references Gershman, S. J., & Niv, Y. (2010). Learning latent structure: carving nature at its joints. Current Opinion in Neurobiology, 20(2), 251-256. doi:10.1016/j.conb.2010.02.008 es_ES
dc.description.references Glimcher, P. W. (2011). Understanding dopamine and reinforcement learning: The dopamine reward prediction error hypothesis. Proceedings of the National Academy of Sciences, 108(Supplement_3), 15647-15654. doi:10.1073/pnas.1014269108 es_ES
dc.description.references Gottlieb, J. (2012). Attention, Learning, and the Value of Information. Neuron, 76(2), 281-295. doi:10.1016/j.neuron.2012.09.034 es_ES
dc.description.references Gottlieb, J., Hayhoe, M., Hikosaka, O., & Rangel, A. (2014). Attention, Reward, and Information Seeking. Journal of Neuroscience, 34(46), 15497-15504. doi:10.1523/jneurosci.3270-14.2014 es_ES
dc.description.references Hare, T. A., Schultz, W., Camerer, C. F., O’Doherty, J. P., & Rangel, A. (2011). Transformation of stimulus value signals into motor commands during simple choice. Proceedings of the National Academy of Sciences, 108(44), 18120-18125. doi:10.1073/pnas.1109322108 es_ES
dc.description.references Huys, Q. J. M., Cools, R., Gölzer, M., Friedel, E., Heinz, A., Dolan, R. J., & Dayan, P. (2011). Disentangling the Roles of Approach, Activation and Valence in Instrumental and Pavlovian Responding. PLoS Computational Biology, 7(4), e1002028. doi:10.1371/journal.pcbi.1002028 es_ES
dc.description.references Kaping, D., Vinck, M., Hutchison, R. M., Everling, S., & Womelsdorf, T. (2011). Specific Contributions of Ventromedial, Anterior Cingulate, and Lateral Prefrontal Cortex for Attentional Selection and Stimulus Valuation. PLoS Biology, 9(12), e1001224. doi:10.1371/journal.pbio.1001224 es_ES
dc.description.references Kennerley, S. W., Behrens, T. E. J., & Wallis, J. D. (2011). Double dissociation of value computations in orbitofrontal and anterior cingulate neurons. Nature Neuroscience, 14(12), 1581-1589. doi:10.1038/nn.2961 es_ES
dc.description.references Krauzlis, R. J., Bollimunta, A., Arcizet, F., & Wang, L. (2014). Attention as an effect not a cause. Trends in Cognitive Sciences, 18(9), 457-464. doi:10.1016/j.tics.2014.05.008 es_ES
dc.description.references Kristjánsson, Á. (2006). Rapid learning in attention shifts: A review. Visual Cognition, 13(3), 324-362. doi:10.1080/13506280544000039 es_ES
dc.description.references Kristjánsson, Á., & Campana, G. (2010). Where perception meets memory: A review of repetition priming in visual search tasks. Attention, Perception, & Psychophysics, 72(1), 5-18. doi:10.3758/app.72.1.5 es_ES
dc.description.references Kruschke, J. K., & Hullinger, R. A. (s. f.). Evolution of attention in learning. Computational Models of Conditioning, 10-52. doi:10.1017/cbo9780511760402.002 es_ES
dc.description.references Lau, B., & Glimcher, P. W. (2005). DYNAMIC RESPONSE-BY-RESPONSE MODELS OF MATCHING BEHAVIOR IN RHESUS MONKEYS. Journal of the Experimental Analysis of Behavior, 84(3), 555-579. doi:10.1901/jeab.2005.110-04 es_ES
dc.description.references Lau, B., & Glimcher, P. W. (2008). Value Representations in the Primate Striatum during Matching Behavior. Neuron, 58(3), 451-463. doi:10.1016/j.neuron.2008.02.021 es_ES
dc.description.references Legenstein, R., Wilbert, N., & Wiskott, L. (2010). Reinforcement Learning on Slow Features of High-Dimensional Input Streams. PLoS Computational Biology, 6(8), e1000894. doi:10.1371/journal.pcbi.1000894 es_ES
dc.description.references Luk, C.-H., & Wallis, J. D. (2013). Choice Coding in Frontal Cortex during Stimulus-Guided or Action-Guided Decision-Making. Journal of Neuroscience, 33(5), 1864-1871. doi:10.1523/jneurosci.4920-12.2013 es_ES
dc.description.references Navalpakkam, V., Koch, C., Rangel, A., & Perona, P. (2010). Optimal reward harvesting in complex perceptual environments. Proceedings of the National Academy of Sciences, 107(11), 5232-5237. doi:10.1073/pnas.0911972107 es_ES
dc.description.references Padoa-Schioppa, C. (2011). Neurobiology of Economic Choice: A Good-Based Model. Annual Review of Neuroscience, 34(1), 333-359. doi:10.1146/annurev-neuro-061010-113648 es_ES
dc.description.references Passingham, R. E., & Wise, S. P. (2012). The Neurobiology of the Prefrontal Cortex. doi:10.1093/acprof:osobl/9780199552917.001.0001 es_ES
dc.description.references Peck, C. J., Jangraw, D. C., Suzuki, M., Efem, R., & Gottlieb, J. (2009). Reward Modulates Attention Independently of Action Value in Posterior Parietal Cortex. Journal of Neuroscience, 29(36), 11182-11191. doi:10.1523/jneurosci.1929-09.2009 es_ES
dc.description.references Peck, C. J., Lau, B., & Salzman, C. D. (2013). The primate amygdala combines information about space and value. Nature Neuroscience, 16(3), 340-348. doi:10.1038/nn.3328 es_ES
dc.description.references Rangel, A., & Clithero, J. A. (2014). The Computation of Stimulus Values in Simple Choice. Neuroeconomics, 125-148. doi:10.1016/b978-0-12-416008-8.00008-5 es_ES
dc.description.references Rangel, A., & Hare, T. (2010). Neural computations associated with goal-directed choice. Current Opinion in Neurobiology, 20(2), 262-270. doi:10.1016/j.conb.2010.03.001 es_ES
dc.description.references Roelfsema, P. R., & Ooyen, A. van. (2005). Attention-Gated Reinforcement Learning of Internal Representations for Classification. Neural Computation, 17(10), 2176-2214. doi:10.1162/0899766054615699 es_ES
dc.description.references Roelfsema, P. R., van Ooyen, A., & Watanabe, T. (2010). Perceptual learning rules based on reinforcers and attention. Trends in Cognitive Sciences, 14(2), 64-71. doi:10.1016/j.tics.2009.11.005 es_ES
dc.description.references Rombouts, J. O., Bohte, S. M., Martinez-Trujillo, J., & Roelfsema, P. R. (2015). A learning rule that explains how rewards teach attention. Visual Cognition, 23(1-2), 179-205. doi:10.1080/13506285.2015.1010462 es_ES
dc.description.references Rushworth, M. F. S., & Behrens, T. E. J. (2008). Choice, uncertainty and value in prefrontal and cingulate cortex. Nature Neuroscience, 11(4), 389-397. doi:10.1038/nn2066 es_ES
dc.description.references Rushworth, M. F. S., Noonan, M. P., Boorman, E. D., Walton, M. E., & Behrens, T. E. (2011). Frontal Cortex and Reward-Guided Learning and Decision-Making. Neuron, 70(6), 1054-1069. doi:10.1016/j.neuron.2011.05.014 es_ES
dc.description.references Seriès, P., & Seitz, A. R. (2013). Learning what to expect (in visual perception). Frontiers in Human Neuroscience, 7. doi:10.3389/fnhum.2013.00668 es_ES
dc.description.references Seymour, B., & McClure, S. M. (2008). Anchors, scales and the relative coding of value in the brain. Current Opinion in Neurobiology, 18(2), 173-178. doi:10.1016/j.conb.2008.07.010 es_ES
dc.description.references Shenhav, A., Botvinick, M. M., & Cohen, J. D. (2013). The Expected Value of Control: An Integrative Theory of Anterior Cingulate Cortex Function. Neuron, 79(2), 217-240. doi:10.1016/j.neuron.2013.07.007 es_ES
dc.description.references Shteingart, H., & Loewenstein, Y. (2014). Reinforcement learning and human behavior. Current Opinion in Neurobiology, 25, 93-98. doi:10.1016/j.conb.2013.12.004 es_ES
dc.description.references Smith, A. C., & Brown, E. N. (2003). Estimating a State-Space Model from Point Process Observations. Neural Computation, 15(5), 965-991. doi:10.1162/089976603765202622 es_ES
dc.description.references Smith, A. C. (2004). Dynamic Analysis of Learning in Behavioral Experiments. Journal of Neuroscience, 24(2), 447-461. doi:10.1523/jneurosci.2908-03.2004 es_ES
dc.description.references Sugrue, L. P., Corrado, G. S., & Newsome, W. T. (2004). Matching Behavior and the Representation of Value in the Parietal Cortex. Science, 304(5678), 1782-1787. doi:10.1126/science.1094765 es_ES
dc.description.references Summerfield, C., & Egner, T. (2009). Expectation (and attention) in visual cognition. Trends in Cognitive Sciences, 13(9), 403-409. doi:10.1016/j.tics.2009.06.003 es_ES
dc.description.references Tatler, B. W., Hayhoe, M. M., Land, M. F., & Ballard, D. H. (2011). Eye guidance in natural vision: Reinterpreting salience. Journal of Vision, 11(5), 5-5. doi:10.1167/11.5.5 es_ES
dc.description.references Tsotsos, J. K. (2011). A Computational Perspective on Visual Attention. doi:10.7551/mitpress/9780262015417.001.0001 es_ES
dc.description.references Van der Meer, M., Kurth-Nelson, Z., & Redish, A. D. (2012). Information Processing in Decision-Making Systems. The Neuroscientist, 18(4), 342-359. doi:10.1177/1073858411435128 es_ES
dc.description.references Wirth, S., Yanike, M., Frank, L. M., Smith, A. C., Brown, E. N., & Suzuki, W. A. (2003). Single Neurons in the Monkey Hippocampus and Learning of New Associations. Science, 300(5625), 1578-1581. doi:10.1126/science.1084324 es_ES
dc.description.references Womelsdorf, T., & Everling, S. (2015). Long-Range Attention Networks: Circuit Motifs Underlying Endogenously Controlled Stimulus Selection. Trends in Neurosciences, 38(11), 682-700. doi:10.1016/j.tins.2015.08.009 es_ES
dc.description.references Wunderlich, K., Rangel, A., & O’Doherty, J. P. (2010). Economic choices can be made using only stimulus values. Proceedings of the National Academy of Sciences, 107(34), 15005-15010. doi:10.1073/pnas.1002258107 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem