Ahn, W.-Y., Busemeyer, J. R., Wagenmakers, E.-J., & Stout, J. C. (2008). Comparison of Decision Learning Models Using the Generalization Criterion Method. Cognitive Science, 32(8), 1376-1402. doi:10.1080/03640210802352992
Alexander, W. H. (2007). Shifting Attention Using a Temporal Difference Prediction Error and High-Dimensional Input. Adaptive Behavior, 15(2), 121-133. doi:10.1177/1059712307078663
Anderson, B. A. (2013). A value-driven mechanism of attentional selection. Journal of Vision, 13(3), 7-7. doi:10.1167/13.3.7
[+]
Ahn, W.-Y., Busemeyer, J. R., Wagenmakers, E.-J., & Stout, J. C. (2008). Comparison of Decision Learning Models Using the Generalization Criterion Method. Cognitive Science, 32(8), 1376-1402. doi:10.1080/03640210802352992
Alexander, W. H. (2007). Shifting Attention Using a Temporal Difference Prediction Error and High-Dimensional Input. Adaptive Behavior, 15(2), 121-133. doi:10.1177/1059712307078663
Anderson, B. A. (2013). A value-driven mechanism of attentional selection. Journal of Vision, 13(3), 7-7. doi:10.1167/13.3.7
Anderson, B. A., Laurent, P. A., & Yantis, S. (2011). Value-driven attentional capture. Proceedings of the National Academy of Sciences, 108(25), 10367-10371. doi:10.1073/pnas.1104047108
Ardid, S., Balcarras, M., & Womelsdorf, T. (2014). «Adaptive learning» as a mechanistic candidate for reaching optimal task-set representations flexibly. BMC Neuroscience, 15(S1). doi:10.1186/1471-2202-15-s1-p8
Ardid, S., & Wang, X.-J. (2013). A Tweaking Principle for Executive Control: Neuronal Circuit Mechanism for Rule-Based Task Switching and Conflict Resolution. Journal of Neuroscience, 33(50), 19504-19517. doi:10.1523/jneurosci.1356-13.2013
Asaad, W. F., & Eskandar, E. N. (2008). A flexible software tool for temporally-precise behavioral control in Matlab. Journal of Neuroscience Methods, 174(2), 245-258. doi:10.1016/j.jneumeth.2008.07.014
Awh, E., Belopolsky, A. V., & Theeuwes, J. (2012). Top-down versus bottom-up attentional control: a failed theoretical dichotomy. Trends in Cognitive Sciences, 16(8), 437-443. doi:10.1016/j.tics.2012.06.010
Cai, X., & Padoa-Schioppa, C. (2014). Contributions of Orbitofrontal and Lateral Prefrontal Cortices to Economic Choice and the Good-to-Action Transformation. Neuron, 81(5), 1140-1151. doi:10.1016/j.neuron.2014.01.008
Chelazzi, L., Perlato, A., Santandrea, E., & Della Libera, C. (2013). Rewards teach visual selective attention. Vision Research, 85, 58-72. doi:10.1016/j.visres.2012.12.005
Collins, A. G. E., & Frank, M. J. (2013). Cognitive control over learning: Creating, clustering, and generalizing task-set structure. Psychological Review, 120(1), 190-229. doi:10.1037/a0030852
Dayan, P., & Berridge, K. C. (2014). Model-based and model-free Pavlovian reward learning: Revaluation, revision, and revelation. Cognitive, Affective, & Behavioral Neuroscience, 14(2), 473-492. doi:10.3758/s13415-014-0277-8
Dayan, P., Kakade, S., & Montague, P. R. (2000). Learning and selective attention. Nature Neuroscience, 3(S11), 1218-1223. doi:10.1038/81504
De Wit, S., Watson, P., Harsay, H. A., Cohen, M. X., van de Vijver, I., & Ridderinkhof, K. R. (2012). Corticostriatal Connectivity Underlies Individual Differences in the Balance between Habitual and Goal-Directed Action Control. Journal of Neuroscience, 32(35), 12066-12075. doi:10.1523/jneurosci.1088-12.2012
Dehaene, S., & Changeux, J.-P. (2000). Reward-dependent learning in neuronal networks for planning and decision making. Cognition, emotion and autonomic responses: The integrative role of the prefrontal cortex and limbic structures, 217-229. doi:10.1016/s0079-6123(00)26016-0
Della Libera, C., & Chelazzi, L. (2009). Learning to Attend and to Ignore Is a Matter of Gains and Losses. Psychological Science, 20(6), 778-784. doi:10.1111/j.1467-9280.2009.02360.x
Dolan, R. J., & Dayan, P. (2013). Goals and Habits in the Brain. Neuron, 80(2), 312-325. doi:10.1016/j.neuron.2013.09.007
Donoso, M., Collins, A. G. E., & Koechlin, E. (2014). Foundations of human reasoning in the prefrontal cortex. Science, 344(6191), 1481-1486. doi:10.1126/science.1252254
Fecteau, J. H., & Munoz, D. P. (2003). Exploring the consequences of the previous trial. Nature Reviews Neuroscience, 4(6), 435-443. doi:10.1038/nrn1114
Gershman, S. J., & Niv, Y. (2010). Learning latent structure: carving nature at its joints. Current Opinion in Neurobiology, 20(2), 251-256. doi:10.1016/j.conb.2010.02.008
Glimcher, P. W. (2011). Understanding dopamine and reinforcement learning: The dopamine reward prediction error hypothesis. Proceedings of the National Academy of Sciences, 108(Supplement_3), 15647-15654. doi:10.1073/pnas.1014269108
Gottlieb, J. (2012). Attention, Learning, and the Value of Information. Neuron, 76(2), 281-295. doi:10.1016/j.neuron.2012.09.034
Gottlieb, J., Hayhoe, M., Hikosaka, O., & Rangel, A. (2014). Attention, Reward, and Information Seeking. Journal of Neuroscience, 34(46), 15497-15504. doi:10.1523/jneurosci.3270-14.2014
Hare, T. A., Schultz, W., Camerer, C. F., O’Doherty, J. P., & Rangel, A. (2011). Transformation of stimulus value signals into motor commands during simple choice. Proceedings of the National Academy of Sciences, 108(44), 18120-18125. doi:10.1073/pnas.1109322108
Huys, Q. J. M., Cools, R., Gölzer, M., Friedel, E., Heinz, A., Dolan, R. J., & Dayan, P. (2011). Disentangling the Roles of Approach, Activation and Valence in Instrumental and Pavlovian Responding. PLoS Computational Biology, 7(4), e1002028. doi:10.1371/journal.pcbi.1002028
Kaping, D., Vinck, M., Hutchison, R. M., Everling, S., & Womelsdorf, T. (2011). Specific Contributions of Ventromedial, Anterior Cingulate, and Lateral Prefrontal Cortex for Attentional Selection and Stimulus Valuation. PLoS Biology, 9(12), e1001224. doi:10.1371/journal.pbio.1001224
Kennerley, S. W., Behrens, T. E. J., & Wallis, J. D. (2011). Double dissociation of value computations in orbitofrontal and anterior cingulate neurons. Nature Neuroscience, 14(12), 1581-1589. doi:10.1038/nn.2961
Krauzlis, R. J., Bollimunta, A., Arcizet, F., & Wang, L. (2014). Attention as an effect not a cause. Trends in Cognitive Sciences, 18(9), 457-464. doi:10.1016/j.tics.2014.05.008
Kristjánsson, Á. (2006). Rapid learning in attention shifts: A review. Visual Cognition, 13(3), 324-362. doi:10.1080/13506280544000039
Kristjánsson, Á., & Campana, G. (2010). Where perception meets memory: A review of repetition priming in visual search tasks. Attention, Perception, & Psychophysics, 72(1), 5-18. doi:10.3758/app.72.1.5
Kruschke, J. K., & Hullinger, R. A. (s. f.). Evolution of attention in learning. Computational Models of Conditioning, 10-52. doi:10.1017/cbo9780511760402.002
Lau, B., & Glimcher, P. W. (2005). DYNAMIC RESPONSE-BY-RESPONSE MODELS OF MATCHING BEHAVIOR IN RHESUS MONKEYS. Journal of the Experimental Analysis of Behavior, 84(3), 555-579. doi:10.1901/jeab.2005.110-04
Lau, B., & Glimcher, P. W. (2008). Value Representations in the Primate Striatum during Matching Behavior. Neuron, 58(3), 451-463. doi:10.1016/j.neuron.2008.02.021
Legenstein, R., Wilbert, N., & Wiskott, L. (2010). Reinforcement Learning on Slow Features of High-Dimensional Input Streams. PLoS Computational Biology, 6(8), e1000894. doi:10.1371/journal.pcbi.1000894
Luk, C.-H., & Wallis, J. D. (2013). Choice Coding in Frontal Cortex during Stimulus-Guided or Action-Guided Decision-Making. Journal of Neuroscience, 33(5), 1864-1871. doi:10.1523/jneurosci.4920-12.2013
Navalpakkam, V., Koch, C., Rangel, A., & Perona, P. (2010). Optimal reward harvesting in complex perceptual environments. Proceedings of the National Academy of Sciences, 107(11), 5232-5237. doi:10.1073/pnas.0911972107
Padoa-Schioppa, C. (2011). Neurobiology of Economic Choice: A Good-Based Model. Annual Review of Neuroscience, 34(1), 333-359. doi:10.1146/annurev-neuro-061010-113648
Passingham, R. E., & Wise, S. P. (2012). The Neurobiology of the Prefrontal Cortex. doi:10.1093/acprof:osobl/9780199552917.001.0001
Peck, C. J., Jangraw, D. C., Suzuki, M., Efem, R., & Gottlieb, J. (2009). Reward Modulates Attention Independently of Action Value in Posterior Parietal Cortex. Journal of Neuroscience, 29(36), 11182-11191. doi:10.1523/jneurosci.1929-09.2009
Peck, C. J., Lau, B., & Salzman, C. D. (2013). The primate amygdala combines information about space and value. Nature Neuroscience, 16(3), 340-348. doi:10.1038/nn.3328
Rangel, A., & Clithero, J. A. (2014). The Computation of Stimulus Values in Simple Choice. Neuroeconomics, 125-148. doi:10.1016/b978-0-12-416008-8.00008-5
Rangel, A., & Hare, T. (2010). Neural computations associated with goal-directed choice. Current Opinion in Neurobiology, 20(2), 262-270. doi:10.1016/j.conb.2010.03.001
Roelfsema, P. R., & Ooyen, A. van. (2005). Attention-Gated Reinforcement Learning of Internal Representations for Classification. Neural Computation, 17(10), 2176-2214. doi:10.1162/0899766054615699
Roelfsema, P. R., van Ooyen, A., & Watanabe, T. (2010). Perceptual learning rules based on reinforcers and attention. Trends in Cognitive Sciences, 14(2), 64-71. doi:10.1016/j.tics.2009.11.005
Rombouts, J. O., Bohte, S. M., Martinez-Trujillo, J., & Roelfsema, P. R. (2015). A learning rule that explains how rewards teach attention. Visual Cognition, 23(1-2), 179-205. doi:10.1080/13506285.2015.1010462
Rushworth, M. F. S., & Behrens, T. E. J. (2008). Choice, uncertainty and value in prefrontal and cingulate cortex. Nature Neuroscience, 11(4), 389-397. doi:10.1038/nn2066
Rushworth, M. F. S., Noonan, M. P., Boorman, E. D., Walton, M. E., & Behrens, T. E. (2011). Frontal Cortex and Reward-Guided Learning and Decision-Making. Neuron, 70(6), 1054-1069. doi:10.1016/j.neuron.2011.05.014
Seriès, P., & Seitz, A. R. (2013). Learning what to expect (in visual perception). Frontiers in Human Neuroscience, 7. doi:10.3389/fnhum.2013.00668
Seymour, B., & McClure, S. M. (2008). Anchors, scales and the relative coding of value in the brain. Current Opinion in Neurobiology, 18(2), 173-178. doi:10.1016/j.conb.2008.07.010
Shenhav, A., Botvinick, M. M., & Cohen, J. D. (2013). The Expected Value of Control: An Integrative Theory of Anterior Cingulate Cortex Function. Neuron, 79(2), 217-240. doi:10.1016/j.neuron.2013.07.007
Shteingart, H., & Loewenstein, Y. (2014). Reinforcement learning and human behavior. Current Opinion in Neurobiology, 25, 93-98. doi:10.1016/j.conb.2013.12.004
Smith, A. C., & Brown, E. N. (2003). Estimating a State-Space Model from Point Process Observations. Neural Computation, 15(5), 965-991. doi:10.1162/089976603765202622
Smith, A. C. (2004). Dynamic Analysis of Learning in Behavioral Experiments. Journal of Neuroscience, 24(2), 447-461. doi:10.1523/jneurosci.2908-03.2004
Sugrue, L. P., Corrado, G. S., & Newsome, W. T. (2004). Matching Behavior and the Representation of Value in the Parietal Cortex. Science, 304(5678), 1782-1787. doi:10.1126/science.1094765
Summerfield, C., & Egner, T. (2009). Expectation (and attention) in visual cognition. Trends in Cognitive Sciences, 13(9), 403-409. doi:10.1016/j.tics.2009.06.003
Tatler, B. W., Hayhoe, M. M., Land, M. F., & Ballard, D. H. (2011). Eye guidance in natural vision: Reinterpreting salience. Journal of Vision, 11(5), 5-5. doi:10.1167/11.5.5
Tsotsos, J. K. (2011). A Computational Perspective on Visual Attention. doi:10.7551/mitpress/9780262015417.001.0001
Van der Meer, M., Kurth-Nelson, Z., & Redish, A. D. (2012). Information Processing in Decision-Making Systems. The Neuroscientist, 18(4), 342-359. doi:10.1177/1073858411435128
Wirth, S., Yanike, M., Frank, L. M., Smith, A. C., Brown, E. N., & Suzuki, W. A. (2003). Single Neurons in the Monkey Hippocampus and Learning of New Associations. Science, 300(5625), 1578-1581. doi:10.1126/science.1084324
Womelsdorf, T., & Everling, S. (2015). Long-Range Attention Networks: Circuit Motifs Underlying Endogenously Controlled Stimulus Selection. Trends in Neurosciences, 38(11), 682-700. doi:10.1016/j.tins.2015.08.009
Wunderlich, K., Rangel, A., & O’Doherty, J. P. (2010). Economic choices can be made using only stimulus values. Proceedings of the National Academy of Sciences, 107(34), 15005-15010. doi:10.1073/pnas.1002258107
[-]