- -

Donning/Doffing and Arm Positioning Influence in Upper Limb Adaptive Prostheses Control

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Donning/Doffing and Arm Positioning Influence in Upper Limb Adaptive Prostheses Control

Mostrar el registro completo del ítem

Igual, C.; Camacho-García, A.; Bernabeu Soler, EJ.; Igual García, J. (2020). Donning/Doffing and Arm Positioning Influence in Upper Limb Adaptive Prostheses Control. Applied Sciences. 10(8):1-19. https://doi.org/10.3390/app10082892

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/167198

Ficheros en el ítem

Metadatos del ítem

Título: Donning/Doffing and Arm Positioning Influence in Upper Limb Adaptive Prostheses Control
Autor: Igual, Carles Camacho-García, Andrés Bernabeu Soler, Enrique Jorge Igual García, Jorge
Entidad UPV: Universitat Politècnica de València. Departamento de Ingeniería de Sistemas y Automática - Departament d'Enginyeria de Sistemes i Automàtica
Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions
Fecha difusión:
Resumen:
[EN] New upper limb prostheses controllers are continuously being proposed in the literature. However, most of the prostheses commonly used in the real world are based on very old basic controllers. One reason to explain ...[+]
Palabras clave: Linear filtering , Prostheses control , Biomedical engineering , Rehabilitation , Myoelectric signals , Adaptive filters
Derechos de uso: Reconocimiento (by)
Fuente:
Applied Sciences. (eissn: 2076-3417 )
DOI: 10.3390/app10082892
Editorial:
MDPI AG
Versión del editor: https://doi.org/10.3390/app10082892
Código del Proyecto:
info:eu-repo/grantAgreement/MECD//FPU15%2F02870/ES/FPU15%2F02870/
info:eu-repo/grantAgreement/UPV//UPV-FISABIO-2019-A34/
Agradecimientos:
This work is partially supported by Ministerio de Educacion, Cultura y Deporte (Spain) under grant FPU15/02870. The authors would like to thank Lucas Parra for the Myo device and Janne M. Hahne for discussions about the ...[+]
Tipo: Artículo

References

Esquenazi, A. (2004). Amputation rehabilitation and prosthetic restoration. From surgery to community reintegration. Disability and Rehabilitation, 26(14-15), 831-836. doi:10.1080/09638280410001708850

Ziegler-Graham, K., MacKenzie, E. J., Ephraim, P. L., Travison, T. G., & Brookmeyer, R. (2008). Estimating the Prevalence of Limb Loss in the United States: 2005 to 2050. Archives of Physical Medicine and Rehabilitation, 89(3), 422-429. doi:10.1016/j.apmr.2007.11.005

Igual, C., Pardo, L. A., Hahne, J., & Igual, J. M. (2019). Myoelectric Control for Upper Limb Prostheses. Electronics, 8(11), 1244. doi:10.3390/electronics8111244 [+]
Esquenazi, A. (2004). Amputation rehabilitation and prosthetic restoration. From surgery to community reintegration. Disability and Rehabilitation, 26(14-15), 831-836. doi:10.1080/09638280410001708850

Ziegler-Graham, K., MacKenzie, E. J., Ephraim, P. L., Travison, T. G., & Brookmeyer, R. (2008). Estimating the Prevalence of Limb Loss in the United States: 2005 to 2050. Archives of Physical Medicine and Rehabilitation, 89(3), 422-429. doi:10.1016/j.apmr.2007.11.005

Igual, C., Pardo, L. A., Hahne, J., & Igual, J. M. (2019). Myoelectric Control for Upper Limb Prostheses. Electronics, 8(11), 1244. doi:10.3390/electronics8111244

Biddiss, E., & Chau, T. (2007). Upper-Limb Prosthetics. American Journal of Physical Medicine & Rehabilitation, 86(12), 977-987. doi:10.1097/phm.0b013e3181587f6c

Biddiss, E. A., & Chau, T. T. (2007). Upper limb prosthesis use and abandonment. Prosthetics & Orthotics International, 31(3), 236-257. doi:10.1080/03093640600994581

Davidson, J. (2002). A survey of the satisfaction of upper limb amputees with their prostheses, their lifestyles, and their abilities. Journal of Hand Therapy, 15(1), 62-70. doi:10.1053/hanthe.2002.v15.01562

Datta, D., Selvarajah, K., & Davey, N. (2004). Functional outcome of patients with proximal upper limb deficiency–acquired and congenital. Clinical Rehabilitation, 18(2), 172-177. doi:10.1191/0269215504cr716oa

Vujaklija, I., Farina, D., & Aszmann, O. (2016). New developments in prosthetic arm systems. Orthopedic Research and Reviews, Volume 8, 31-39. doi:10.2147/orr.s71468

Scheme, E. J., Englehart, K. B., & Hudgins, B. S. (2011). Selective Classification for Improved Robustness of Myoelectric Control Under Nonideal Conditions. IEEE Transactions on Biomedical Engineering, 58(6), 1698-1705. doi:10.1109/tbme.2011.2113182

Englehart, K., & Hudgins, B. (2003). A robust, real-time control scheme for multifunction myoelectric control. IEEE Transactions on Biomedical Engineering, 50(7), 848-854. doi:10.1109/tbme.2003.813539

Parker, P., Englehart, K., & Hudgins, B. (2006). Myoelectric signal processing for control of powered limb prostheses. Journal of Electromyography and Kinesiology, 16(6), 541-548. doi:10.1016/j.jelekin.2006.08.006

Fougner, A., Stavdahl, Ø., Kyberd, P. J., Losier, Y. G., & Parker, P. A. (2012). Control of Upper Limb Prostheses: Terminology and Proportional Myoelectric Control—A Review. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 20(5), 663-677. doi:10.1109/tnsre.2012.2196711

Resnik, L., Huang, H. (Helen), Winslow, A., Crouch, D. L., Zhang, F., & Wolk, N. (2018). Evaluation of EMG pattern recognition for upper limb prosthesis control: a case study in comparison with direct myoelectric control. Journal of NeuroEngineering and Rehabilitation, 15(1). doi:10.1186/s12984-018-0361-3

Sartori, M., Durandau, G., Došen, S., & Farina, D. (2018). Robust simultaneous myoelectric control of multiple degrees of freedom in wrist-hand prostheses by real-time neuromusculoskeletal modeling. Journal of Neural Engineering, 15(6), 066026. doi:10.1088/1741-2552/aae26b

Velliste, M., Perel, S., Spalding, M. C., Whitford, A. S., & Schwartz, A. B. (2008). Cortical control of a prosthetic arm for self-feeding. Nature, 453(7198), 1098-1101. doi:10.1038/nature06996

Amsuess, S., Vujaklija, I., Goebel, P., Roche, A. D., Graimann, B., Aszmann, O. C., & Farina, D. (2016). Context-Dependent Upper Limb Prosthesis Control for Natural and Robust Use. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 24(7), 744-753. doi:10.1109/tnsre.2015.2454240

Kuiken, T. A., Miller, L. A., Turner, K., & Hargrove, L. J. (2016). A Comparison of Pattern Recognition Control and Direct Control of a Multiple Degree-of-Freedom Transradial Prosthesis. IEEE Journal of Translational Engineering in Health and Medicine, 4, 1-8. doi:10.1109/jtehm.2016.2616123

Phinyomark, A., N. Khushaba, R., & Scheme, E. (2018). Feature Extraction and Selection for Myoelectric Control Based on Wearable EMG Sensors. Sensors, 18(5), 1615. doi:10.3390/s18051615

Asghari Oskoei, M., & Hu, H. (2007). Myoelectric control systems—A survey. Biomedical Signal Processing and Control, 2(4), 275-294. doi:10.1016/j.bspc.2007.07.009

Spanias, J. A., Perreault, E. J., & Hargrove, L. J. (2016). Detection of and Compensation for EMG Disturbances for Powered Lower Limb Prosthesis Control. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 24(2), 226-234. doi:10.1109/tnsre.2015.2413393

Castellini, C., & van der Smagt, P. (2008). Surface EMG in advanced hand prosthetics. Biological Cybernetics, 100(1), 35-47. doi:10.1007/s00422-008-0278-1

Ameri, A., Akhaee, M. A., Scheme, E., & Englehart, K. (2019). Regression convolutional neural network for improved simultaneous EMG control. Journal of Neural Engineering, 16(3), 036015. doi:10.1088/1741-2552/ab0e2e

Hahne, J. M., Biebmann, F., Jiang, N., Rehbaum, H., Farina, D., Meinecke, F. C., … Parra, L. C. (2014). Linear and Nonlinear Regression Techniques for Simultaneous and Proportional Myoelectric Control. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 22(2), 269-279. doi:10.1109/tnsre.2014.2305520

Ameri, A., Scheme, E. J., Kamavuako, E. N., Englehart, K. B., & Parker, P. A. (2014). Real-Time, Simultaneous Myoelectric Control Using Force and Position-Based Training Paradigms. IEEE Transactions on Biomedical Engineering, 61(2), 279-287. doi:10.1109/tbme.2013.2281595

Hochberg, L. R., Serruya, M. D., Friehs, G. M., Mukand, J. A., Saleh, M., Caplan, A. H., … Donoghue, J. P. (2006). Neuronal ensemble control of prosthetic devices by a human with tetraplegia. Nature, 442(7099), 164-171. doi:10.1038/nature04970

Interface Prostheses With Classifier-Feedback-Based User Training. (2017). IEEE Transactions on Biomedical Engineering, 64(11), 2575-2583. doi:10.1109/tbme.2016.2641584

Thomas, N., Ung, G., McGarvey, C., & Brown, J. D. (2019). Comparison of vibrotactile and joint-torque feedback in a myoelectric upper-limb prosthesis. Journal of NeuroEngineering and Rehabilitation, 16(1). doi:10.1186/s12984-019-0545-5

Guémann, M., Bouvier, S., Halgand, C., Borrini, L., Paclet, F., Lapeyre, E., … de Rugy, A. (2018). Sensory and motor parameter estimation for elbow myoelectric control with vibrotactile feedback. Annals of Physical and Rehabilitation Medicine, 61, e467. doi:10.1016/j.rehab.2018.05.1090

Markovic, M., Schweisfurth, M. A., Engels, L. F., Farina, D., & Dosen, S. (2018). Myocontrol is closed-loop control: incidental feedback is sufficient for scaling the prosthesis force in routine grasping. Journal of NeuroEngineering and Rehabilitation, 15(1). doi:10.1186/s12984-018-0422-7

Pasquina, P. F., Perry, B. N., Miller, M. E., Ling, G. S. F., & Tsao, J. W. (2015). Recent advances in bioelectric prostheses. Neurology: Clinical Practice, 5(2), 164-170. doi:10.1212/cpj.0000000000000132

NING, J., & Dario, F. (2014). Myoelectric control of upper limb prosthesis: current status, challenges and recent advances. Frontiers in Neuroengineering, 7. doi:10.3389/conf.fneng.2014.11.00004

Lendaro, E., Mastinu, E., Håkansson, B., & Ortiz-Catalan, M. (2017). Real-time Classification of Non-Weight Bearing Lower-Limb Movements Using EMG to Facilitate Phantom Motor Execution: Engineering and Case Study Application on Phantom Limb Pain. Frontiers in Neurology, 8. doi:10.3389/fneur.2017.00470

Mastinu, E., Ortiz-Catalan, M., & Hakansson, B. (2015). Analog front-ends comparison in the way of a portable, low-power and low-cost EMG controller based on pattern recognition. 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). doi:10.1109/embc.2015.7318805

BECK, T. W., HOUSH, T. J., CRAMER, J. T., MALEK, M. H., MIELKE, M., HENDRIX, R., & WEIR, J. P. (2008). Electrode Shift and Normalization Reduce the Innervation Zone’s Influence on EMG. Medicine & Science in Sports & Exercise, 40(7), 1314-1322. doi:10.1249/mss.0b013e31816c4822

Pasquina, P. F., Evangelista, M., Carvalho, A. J., Lockhart, J., Griffin, S., Nanos, G., … Hankin, D. (2015). First-in-man demonstration of a fully implanted myoelectric sensors system to control an advanced electromechanical prosthetic hand. Journal of Neuroscience Methods, 244, 85-93. doi:10.1016/j.jneumeth.2014.07.016

Fougner, A., Scheme, E., Chan, A. D. C., Englehart, K., & Stavdahl, Ø. (2011). Resolving the Limb Position Effect in Myoelectric Pattern Recognition. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 19(6), 644-651. doi:10.1109/tnsre.2011.2163529

Hwang, H.-J., Hahne, J. M., & Müller, K.-R. (2017). Real-time robustness evaluation of regression based myoelectric control against arm position change and donning/doffing. PLOS ONE, 12(11), e0186318. doi:10.1371/journal.pone.0186318

Young, A. J., Hargrove, L. J., & Kuiken, T. A. (2011). The Effects of Electrode Size and Orientation on the Sensitivity of Myoelectric Pattern Recognition Systems to Electrode Shift. IEEE Transactions on Biomedical Engineering, 58(9), 2537-2544. doi:10.1109/tbme.2011.2159216

Prahm, C., Schulz, A., Paaben, B., Schoisswohl, J., Kaniusas, E., Dorffner, G., … Aszmann, O. (2019). Counteracting Electrode Shifts in Upper-Limb Prosthesis Control via Transfer Learning. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 27(5), 956-962. doi:10.1109/tnsre.2019.2907200

Cipriani, C., Sassu, R., Controzzi, M., & Carrozza, M. C. (2011). Influence of the weight actions of the hand prosthesis on the performance of pattern recognition based myoelectric control: Preliminary study. 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society. doi:10.1109/iembs.2011.6090468

Amsuss, S., Paredes, L. P., Rudigkeit, N., Graimann, B., Herrmann, M. J., & Farina, D. (2013). Long term stability of surface EMG pattern classification for prosthetic control. 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). doi:10.1109/embc.2013.6610327

Scheme, E., & Englehart, K. (2011). Electromyogram pattern recognition for control of powered upper-limb prostheses: State of the art and challenges for clinical use. The Journal of Rehabilitation Research and Development, 48(6), 643. doi:10.1682/jrrd.2010.09.0177

Scheme, E., Fougner, A., Stavdahl, Ø., Chan, A. D. C., & Englehart, K. (2010). Examining the adverse effects of limb position on pattern recognition based myoelectric control. 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology. doi:10.1109/iembs.2010.5627638

Dohnalek, P., Gajdos, P., & Peterek, T. (2013). Human activity recognition on raw sensor data via sparse approximation. 2013 36th International Conference on Telecommunications and Signal Processing (TSP). doi:10.1109/tsp.2013.6614027

Marasco, P. D., Hebert, J. S., Sensinger, J. W., Shell, C. E., Schofield, J. S., Thumser, Z. C., … Orzell, B. M. (2018). Illusory movement perception improves motor control for prosthetic hands. Science Translational Medicine, 10(432). doi:10.1126/scitranslmed.aao6990

Mastinu, E., Doguet, P., Botquin, Y., Hakansson, B., & Ortiz-Catalan, M. (2017). Embedded System for Prosthetic Control Using Implanted Neuromuscular Interfaces Accessed Via an Osseointegrated Implant. IEEE Transactions on Biomedical Circuits and Systems, 11(4), 867-877. doi:10.1109/tbcas.2017.2694710

Igual, C., Igual, J., Hahne, J. M., & Parra, L. C. (2019). Adaptive Auto-Regressive Proportional Myoelectric Control. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 27(2), 314-322. doi:10.1109/tnsre.2019.2894464

Huang, Y., Englehart, K. B., Hudgins, B., & Chan, A. D. C. (2005). A Gaussian Mixture Model Based Classification Scheme for Myoelectric Control of Powered Upper Limb Prostheses. IEEE Transactions on Biomedical Engineering, 52(11), 1801-1811. doi:10.1109/tbme.2005.856295

Hahne, J. M., Dahne, S., Hwang, H.-J., Muller, K.-R., & Parra, L. C. (2015). Concurrent Adaptation of Human and Machine Improves Simultaneous and Proportional Myoelectric Control. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 23(4), 618-627. doi:10.1109/tnsre.2015.2401134

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem