- -

Emissions reduction from passenger cars with RCCI plug-in hybrid electric vehicle technology

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Emissions reduction from passenger cars with RCCI plug-in hybrid electric vehicle technology

Mostrar el registro completo del ítem

Benajes, J.; García Martínez, A.; Monsalve-Serrano, J.; Martínez-Boggio, SD. (2020). Emissions reduction from passenger cars with RCCI plug-in hybrid electric vehicle technology. Applied Thermal Engineering. 164:1-17. https://doi.org/10.1016/j.applthermaleng.2019.114430

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/167211

Ficheros en el ítem

Metadatos del ítem

Título: Emissions reduction from passenger cars with RCCI plug-in hybrid electric vehicle technology
Autor: Benajes, Jesús García Martínez, Antonio Monsalve-Serrano, Javier Martínez-Boggio, Santiago Daniel
Entidad UPV: Universitat Politècnica de València. Departamento de Máquinas y Motores Térmicos - Departament de Màquines i Motors Tèrmics
Fecha difusión:
Resumen:
[EN] Hybrid Electric Vehicles (HEVs) can be considered as a potential technology to promote the change from conventional mobility to e-mobility. However, the real benefits in terms of CO2 emissions depend on a great extent ...[+]
Palabras clave: Hybrid powertrain , Diesel internal combustion engines , Emissions regulations , Driving cycles
Derechos de uso: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Fuente:
Applied Thermal Engineering. (issn: 1359-4311 )
DOI: 10.1016/j.applthermaleng.2019.114430
Editorial:
Elsevier
Versión del editor: https://doi.org/10.1016/j.applthermaleng.2019.114430
Código del Proyecto:
info:eu-repo/grantAgreement/UPV//PAID-06-18/
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/TRA2017-87694-R/ES/REDUCCION DE CO2 EN EL TRANSPORTE MEDIANTE LA INYECCION DIRECTA DUAL-FUEL DE BIOCOMBUSTIBLES DE SEGUNDA GENERACION/
info:eu-repo/grantAgreement/UPV//SP20180148/
Agradecimientos:
The authors acknowledge FEDER and Spanish Ministerio de Economia y Competitividad for partially supporting this research through TRANCO project (TRA2017-87694-R). The authors also acknowledge the Universitat Politecnica ...[+]
Tipo: Artículo

References

Rahman, S. M. A., Masjuki, H. H., Kalam, M. A., Abedin, M. J., Sanjid, A., & Sajjad, H. (2013). Impact of idling on fuel consumption and exhaust emissions and available idle-reduction technologies for diesel vehicles – A review. Energy Conversion and Management, 74, 171-182. doi:10.1016/j.enconman.2013.05.019

Chen, D., Jiang, J., Kim, G.-H., Yang, C., & Pesaran, A. (2016). Comparison of different cooling methods for lithium ion battery cells. Applied Thermal Engineering, 94, 846-854. doi:10.1016/j.applthermaleng.2015.10.015

Qiao, Q., Zhao, F., Liu, Z., He, X., & Hao, H. (2019). Life cycle greenhouse gas emissions of Electric Vehicles in China: Combining the vehicle cycle and fuel cycle. Energy, 177, 222-233. doi:10.1016/j.energy.2019.04.080 [+]
Rahman, S. M. A., Masjuki, H. H., Kalam, M. A., Abedin, M. J., Sanjid, A., & Sajjad, H. (2013). Impact of idling on fuel consumption and exhaust emissions and available idle-reduction technologies for diesel vehicles – A review. Energy Conversion and Management, 74, 171-182. doi:10.1016/j.enconman.2013.05.019

Chen, D., Jiang, J., Kim, G.-H., Yang, C., & Pesaran, A. (2016). Comparison of different cooling methods for lithium ion battery cells. Applied Thermal Engineering, 94, 846-854. doi:10.1016/j.applthermaleng.2015.10.015

Qiao, Q., Zhao, F., Liu, Z., He, X., & Hao, H. (2019). Life cycle greenhouse gas emissions of Electric Vehicles in China: Combining the vehicle cycle and fuel cycle. Energy, 177, 222-233. doi:10.1016/j.energy.2019.04.080

Huda, M., Aziz, M., & Tokimatsu, K. (2019). The future of electric vehicles to grid integration in Indonesia. Energy Procedia, 158, 4592-4597. doi:10.1016/j.egypro.2019.01.749

Taljegard, M., Göransson, L., Odenberger, M., & Johnsson, F. (2019). Impacts of electric vehicles on the electricity generation portfolio – A Scandinavian-German case study. Applied Energy, 235, 1637-1650. doi:10.1016/j.apenergy.2018.10.133

González, L. G., Siavichay, E., & Espinoza, J. L. (2019). Impact of EV fast charging stations on the power distribution network of a Latin American intermediate city. Renewable and Sustainable Energy Reviews, 107, 309-318. doi:10.1016/j.rser.2019.03.017

Reijnders, J., Boot, M., & de Goey, P. (2016). Impact of aromaticity and cetane number on the soot-NOx trade-off in conventional and low temperature combustion. Fuel, 186, 24-34. doi:10.1016/j.fuel.2016.08.009

Benajes, J., García, A., Monsalve-Serrano, J., & Villalta, D. (2018). Exploring the limits of the reactivity controlled compression ignition combustion concept in a light-duty diesel engine and the influence of the direct-injected fuel properties. Energy Conversion and Management, 157, 277-287. doi:10.1016/j.enconman.2017.12.028

Xu, H. T., Luo, Z. Q., Wang, N., Qu, Z. G., Chen, J., & An, L. (2019). Experimental study of the selective catalytic reduction after-treatment for the exhaust emission of a diesel engine. Applied Thermal Engineering, 147, 198-204. doi:10.1016/j.applthermaleng.2018.10.067

Guan, B., Zhan, R., Lin, H., & Huang, Z. (2014). Review of state of the art technologies of selective catalytic reduction of NOx from diesel engine exhaust. Applied Thermal Engineering, 66(1-2), 395-414. doi:10.1016/j.applthermaleng.2014.02.021

Mera, Z., Fonseca, N., López, J.-M., & Casanova, J. (2019). Analysis of the high instantaneous NOx emissions from Euro 6 diesel passenger cars under real driving conditions. Applied Energy, 242, 1074-1089. doi:10.1016/j.apenergy.2019.03.120

Zehni, A., Khoshbakhti Saray, R., & Poorghasemi, K. (2017). Numerical comparison of PCCI combustion and emission of diesel and biodiesel fuels at low load conditions using 3D-CFD models coupled with chemical kinetics. Applied Thermal Engineering, 110, 1483-1499. doi:10.1016/j.applthermaleng.2016.09.056

Benajes, J., García, A., Monsalve-Serrano, J., & Villalta, D. (2018). Benefits of E85 versus gasoline as low reactivity fuel for an automotive diesel engine operating in reactivity controlled compression ignition combustion mode. Energy Conversion and Management, 159, 85-95. doi:10.1016/j.enconman.2018.01.015

García, A., Monsalve-Serrano, J., Rückert Roso, V., & Santos Martins, M. E. (2017). Evaluating the emissions and performance of two dual-mode RCCI combustion strategies under the World Harmonized Vehicle Cycle (WHVC). Energy Conversion and Management, 149, 263-274. doi:10.1016/j.enconman.2017.07.034

Huo, Y., Yan, F., & Feng, D. (2018). A hybrid electric vehicle energy optimization strategy by using fueling control in diesel engines. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 233(3), 517-530. doi:10.1177/0954407017747372

Williams, B., Martin, E., Lipman, T., & Kammen, D. (2011). Plug-in-Hybrid Vehicle Use, Energy Consumption, and Greenhouse Emissions: An Analysis of Household Vehicle Placements in Northern California. Energies, 4(3), 435-457. doi:10.3390/en4030435

Commission Regulation (EC) No 692/2008 of 18 July 2008 implementing and amending Regulation (EC) No 715/2007 of the European Parliament and of the Council on type-approval of motor vehicles with respect to emissions from light passenger and commercial veh, 2008.

Paffumi, E., De Gennaro, M., & Martini, G. (2018). Alternative utility factor versus the SAE J2841 standard method for PHEV and BEV applications. Transport Policy, 68, 80-97. doi:10.1016/j.tranpol.2018.02.014

Xie, S., Hu, X., Liu, T., Qi, S., Lang, K., & Li, H. (2019). Predictive vehicle-following power management for plug-in hybrid electric vehicles. Energy, 166, 701-714. doi:10.1016/j.energy.2018.10.129

Rocco, M. V., Casalegno, A., & Colombo, E. (2018). Modelling road transport technologies in future scenarios: Theoretical comparison and application of Well-to-Wheels and Input-Output analyses. Applied Energy, 232, 583-597. doi:10.1016/j.apenergy.2018.09.222

Plötz, P., Funke, S. Á., & Jochem, P. (2018). The impact of daily and annual driving on fuel economy and CO2 emissions of plug-in hybrid electric vehicles. Transportation Research Part A: Policy and Practice, 118, 331-340. doi:10.1016/j.tra.2018.09.018

Marmiroli, B., Messagie, M., Dotelli, G., & Van Mierlo, J. (2018). Electricity Generation in LCA of Electric Vehicles: A Review. Applied Sciences, 8(8), 1384. doi:10.3390/app8081384

Samaras, C., & Meisterling, K. (2008). Life Cycle Assessment of Greenhouse Gas Emissions from Plug-in Hybrid Vehicles: Implications for Policy. Environmental Science & Technology, 42(9), 3170-3176. doi:10.1021/es702178s

De Souza, L. L. P., Lora, E. E. S., Palacio, J. C. E., Rocha, M. H., Renó, M. L. G., & Venturini, O. J. (2018). Comparative environmental life cycle assessment of conventional vehicles with different fuel options, plug-in hybrid and electric vehicles for a sustainable transportation system in Brazil. Journal of Cleaner Production, 203, 444-468. doi:10.1016/j.jclepro.2018.08.236

A. Burnham, User Guide for AFLEET Tool 2018, 2018, 45.

Wang, M., Han, J., Dunn, J. B., Cai, H., & Elgowainy, A. (2012). Well-to-wheels energy use and greenhouse gas emissions of ethanol from corn, sugarcane and cellulosic biomass for US use. Environmental Research Letters, 7(4), 045905. doi:10.1088/1748-9326/7/4/045905

Lu, Z., Han, J., Wang, M., Cai, H., Sun, P., Dieffenthaler, D., … Przesmitzki, S. (2016). Well-to-Wheels Analysis of the Greenhouse Gas Emissions and Energy Use of Vehicles with Gasoline Compression Ignition Engines on Low Octane Gasoline-Like Fuel. SAE International Journal of Fuels and Lubricants, 9(3), 527-545. doi:10.4271/2016-01-2208

Argon, A review of Battery Life-Cycle Analysis: State of Knowledge and Critical Needs, 2010.

Millo, F., Ferraro, C. V., & Rolando, L. (2012). Analysis of different control strategies for the simultaneous reduction of CO<SUB align=«right»>2 and NO<SUB align=«right»>x emissions of a diesel hybrid passenger car. International Journal of Vehicle Design, 58(2/3/4), 427. doi:10.1504/ijvd.2012.047393

Asghar, M., Bhatti, A. I., Ahmed, Q., & Murtaza, G. (2018). Energy Management Strategy for Atkinson Cycle Engine Based Parallel Hybrid Electric Vehicle. IEEE Access, 6, 28008-28018. doi:10.1109/access.2018.2835395

Benajes, J., García, A., Monsalve-Serrano, J., & Martínez-Boggio, S. (2019). Optimization of the parallel and mild hybrid vehicle platforms operating under conventional and advanced combustion modes. Energy Conversion and Management, 190, 73-90. doi:10.1016/j.enconman.2019.04.010

Talibi, M., Hellier, P., Watkinson, M., & Ladommatos, N. (2019). Comparative analysis of H2-diesel co-combustion in a single cylinder engine and a chassis dynamometer vehicle. International Journal of Hydrogen Energy, 44(2), 1239-1252. doi:10.1016/j.ijhydene.2018.11.092

Benajes, J., García, A., Monsalve-Serrano, J., & Lago Sari, R. (2018). Fuel consumption and engine-out emissions estimations of a light-duty engine running in dual-mode RCCI/CDC with different fuels and driving cycles. Energy, 157, 19-30. doi:10.1016/j.energy.2018.05.144

Bao, R., Avila, V., & Baxter, J. (2017). Effect of 48 V Mild Hybrid System Layout on Powertrain System Efficiency and Its Potential of Fuel Economy Improvement. SAE Technical Paper Series. doi:10.4271/2017-01-1175

Liu, Z., Ivanco, A., & Filipi, Z. S. (2016). Impacts of Real-World Driving and Driver Aggressiveness on Fuel Consumption of 48V Mild Hybrid Vehicle. SAE International Journal of Alternative Powertrains, 5(2), 249-258. doi:10.4271/2016-01-1166

B. Sarlioglu, C.T. Morris, D. Han, S. Li, Benchmarking of electric and hybrid vehicle electric machines, power electronics, and batteries, in: 2015 Intl Aegean Conf. Electr. Mach. Power Electron., IEEE; 2015, p. 519–526. doi:10.1109/OPTIM.2015.7426993.

Solouk, A., Shakiba-Herfeh, M., Arora, J., & Shahbakhti, M. (2018). Fuel consumption assessment of an electrified powertrain with a multi-mode high-efficiency engine in various levels of hybridization. Energy Conversion and Management, 155, 100-115. doi:10.1016/j.enconman.2017.10.073

Driveline V. GT-SUITE, 2016.

Council GS of the. Proposal for a Regulation of the European Parliament and of the Council setting emission performance standards for new passenger cars and for new light commercial vehicles as part of the Union’s integrated approach to reduce CO2 emissions from light-duty. Brussels, 2019.

Utility Factor Definitions for Plug-In Hybrid Electric Vehicles Using 2001 U.S. DOT National Household Travel Survey Data, 2009. doi:https://doi.org/10.4271/J2841_200903.

Kaushik, L. K., & Muthukumar, P. (2018). Life cycle Assessment (LCA) and Techno-economic Assessment (TEA) of medium scale (5–10 kW) LPG cooking stove with two-layer porous radiant burner. Applied Thermal Engineering, 133, 316-326. doi:10.1016/j.applthermaleng.2018.01.050

Gnansounou, E., Dauriat, A., Villegas, J., & Panichelli, L. (2009). Life cycle assessment of biofuels: Energy and greenhouse gas balances. Bioresource Technology, 100(21), 4919-4930. doi:10.1016/j.biortech.2009.05.067

Deng, T., Zhang, G., Ran, Y., & Liu, P. (2019). Thermal performance of lithium ion battery pack by using cold plate. Applied Thermal Engineering, 160, 114088. doi:10.1016/j.applthermaleng.2019.114088

Moro, A., & Lonza, L. (2018). Electricity carbon intensity in European Member States: Impacts on GHG emissions of electric vehicles. Transportation Research Part D: Transport and Environment, 64, 5-14. doi:10.1016/j.trd.2017.07.012

Shields, M. D., & Zhang, J. (2016). The generalization of Latin hypercube sampling. Reliability Engineering & System Safety, 148, 96-108. doi:10.1016/j.ress.2015.12.002

García, A., Piqueras, P., Monsalve-Serrano, J., & Lago Sari, R. (2018). Sizing a conventional diesel oxidation catalyst to be used for RCCI combustion under real driving conditions. Applied Thermal Engineering, 140, 62-72. doi:10.1016/j.applthermaleng.2018.05.043

Benajes, J., García, A., Monsalve-Serrano, J., & Sari, R. (2018). Potential of RCCI Series Hybrid Vehicle Architecture to Meet the Future CO2 Targets with Low Engine-Out Emissions. Applied Sciences, 8(9), 1472. doi:10.3390/app8091472

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem