Rahman, S. M. A., Masjuki, H. H., Kalam, M. A., Abedin, M. J., Sanjid, A., & Sajjad, H. (2013). Impact of idling on fuel consumption and exhaust emissions and available idle-reduction technologies for diesel vehicles – A review. Energy Conversion and Management, 74, 171-182. doi:10.1016/j.enconman.2013.05.019
Chen, D., Jiang, J., Kim, G.-H., Yang, C., & Pesaran, A. (2016). Comparison of different cooling methods for lithium ion battery cells. Applied Thermal Engineering, 94, 846-854. doi:10.1016/j.applthermaleng.2015.10.015
Qiao, Q., Zhao, F., Liu, Z., He, X., & Hao, H. (2019). Life cycle greenhouse gas emissions of Electric Vehicles in China: Combining the vehicle cycle and fuel cycle. Energy, 177, 222-233. doi:10.1016/j.energy.2019.04.080
[+]
Rahman, S. M. A., Masjuki, H. H., Kalam, M. A., Abedin, M. J., Sanjid, A., & Sajjad, H. (2013). Impact of idling on fuel consumption and exhaust emissions and available idle-reduction technologies for diesel vehicles – A review. Energy Conversion and Management, 74, 171-182. doi:10.1016/j.enconman.2013.05.019
Chen, D., Jiang, J., Kim, G.-H., Yang, C., & Pesaran, A. (2016). Comparison of different cooling methods for lithium ion battery cells. Applied Thermal Engineering, 94, 846-854. doi:10.1016/j.applthermaleng.2015.10.015
Qiao, Q., Zhao, F., Liu, Z., He, X., & Hao, H. (2019). Life cycle greenhouse gas emissions of Electric Vehicles in China: Combining the vehicle cycle and fuel cycle. Energy, 177, 222-233. doi:10.1016/j.energy.2019.04.080
Huda, M., Aziz, M., & Tokimatsu, K. (2019). The future of electric vehicles to grid integration in Indonesia. Energy Procedia, 158, 4592-4597. doi:10.1016/j.egypro.2019.01.749
Taljegard, M., Göransson, L., Odenberger, M., & Johnsson, F. (2019). Impacts of electric vehicles on the electricity generation portfolio – A Scandinavian-German case study. Applied Energy, 235, 1637-1650. doi:10.1016/j.apenergy.2018.10.133
González, L. G., Siavichay, E., & Espinoza, J. L. (2019). Impact of EV fast charging stations on the power distribution network of a Latin American intermediate city. Renewable and Sustainable Energy Reviews, 107, 309-318. doi:10.1016/j.rser.2019.03.017
Reijnders, J., Boot, M., & de Goey, P. (2016). Impact of aromaticity and cetane number on the soot-NOx trade-off in conventional and low temperature combustion. Fuel, 186, 24-34. doi:10.1016/j.fuel.2016.08.009
Benajes, J., García, A., Monsalve-Serrano, J., & Villalta, D. (2018). Exploring the limits of the reactivity controlled compression ignition combustion concept in a light-duty diesel engine and the influence of the direct-injected fuel properties. Energy Conversion and Management, 157, 277-287. doi:10.1016/j.enconman.2017.12.028
Xu, H. T., Luo, Z. Q., Wang, N., Qu, Z. G., Chen, J., & An, L. (2019). Experimental study of the selective catalytic reduction after-treatment for the exhaust emission of a diesel engine. Applied Thermal Engineering, 147, 198-204. doi:10.1016/j.applthermaleng.2018.10.067
Guan, B., Zhan, R., Lin, H., & Huang, Z. (2014). Review of state of the art technologies of selective catalytic reduction of NOx from diesel engine exhaust. Applied Thermal Engineering, 66(1-2), 395-414. doi:10.1016/j.applthermaleng.2014.02.021
Mera, Z., Fonseca, N., López, J.-M., & Casanova, J. (2019). Analysis of the high instantaneous NOx emissions from Euro 6 diesel passenger cars under real driving conditions. Applied Energy, 242, 1074-1089. doi:10.1016/j.apenergy.2019.03.120
Zehni, A., Khoshbakhti Saray, R., & Poorghasemi, K. (2017). Numerical comparison of PCCI combustion and emission of diesel and biodiesel fuels at low load conditions using 3D-CFD models coupled with chemical kinetics. Applied Thermal Engineering, 110, 1483-1499. doi:10.1016/j.applthermaleng.2016.09.056
Benajes, J., García, A., Monsalve-Serrano, J., & Villalta, D. (2018). Benefits of E85 versus gasoline as low reactivity fuel for an automotive diesel engine operating in reactivity controlled compression ignition combustion mode. Energy Conversion and Management, 159, 85-95. doi:10.1016/j.enconman.2018.01.015
García, A., Monsalve-Serrano, J., Rückert Roso, V., & Santos Martins, M. E. (2017). Evaluating the emissions and performance of two dual-mode RCCI combustion strategies under the World Harmonized Vehicle Cycle (WHVC). Energy Conversion and Management, 149, 263-274. doi:10.1016/j.enconman.2017.07.034
Huo, Y., Yan, F., & Feng, D. (2018). A hybrid electric vehicle energy optimization strategy by using fueling control in diesel engines. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 233(3), 517-530. doi:10.1177/0954407017747372
Williams, B., Martin, E., Lipman, T., & Kammen, D. (2011). Plug-in-Hybrid Vehicle Use, Energy Consumption, and Greenhouse Emissions: An Analysis of Household Vehicle Placements in Northern California. Energies, 4(3), 435-457. doi:10.3390/en4030435
Commission Regulation (EC) No 692/2008 of 18 July 2008 implementing and amending Regulation (EC) No 715/2007 of the European Parliament and of the Council on type-approval of motor vehicles with respect to emissions from light passenger and commercial veh, 2008.
Paffumi, E., De Gennaro, M., & Martini, G. (2018). Alternative utility factor versus the SAE J2841 standard method for PHEV and BEV applications. Transport Policy, 68, 80-97. doi:10.1016/j.tranpol.2018.02.014
Xie, S., Hu, X., Liu, T., Qi, S., Lang, K., & Li, H. (2019). Predictive vehicle-following power management for plug-in hybrid electric vehicles. Energy, 166, 701-714. doi:10.1016/j.energy.2018.10.129
Rocco, M. V., Casalegno, A., & Colombo, E. (2018). Modelling road transport technologies in future scenarios: Theoretical comparison and application of Well-to-Wheels and Input-Output analyses. Applied Energy, 232, 583-597. doi:10.1016/j.apenergy.2018.09.222
Plötz, P., Funke, S. Á., & Jochem, P. (2018). The impact of daily and annual driving on fuel economy and CO2 emissions of plug-in hybrid electric vehicles. Transportation Research Part A: Policy and Practice, 118, 331-340. doi:10.1016/j.tra.2018.09.018
Marmiroli, B., Messagie, M., Dotelli, G., & Van Mierlo, J. (2018). Electricity Generation in LCA of Electric Vehicles: A Review. Applied Sciences, 8(8), 1384. doi:10.3390/app8081384
Samaras, C., & Meisterling, K. (2008). Life Cycle Assessment of Greenhouse Gas Emissions from Plug-in Hybrid Vehicles: Implications for Policy. Environmental Science & Technology, 42(9), 3170-3176. doi:10.1021/es702178s
De Souza, L. L. P., Lora, E. E. S., Palacio, J. C. E., Rocha, M. H., Renó, M. L. G., & Venturini, O. J. (2018). Comparative environmental life cycle assessment of conventional vehicles with different fuel options, plug-in hybrid and electric vehicles for a sustainable transportation system in Brazil. Journal of Cleaner Production, 203, 444-468. doi:10.1016/j.jclepro.2018.08.236
A. Burnham, User Guide for AFLEET Tool 2018, 2018, 45.
Wang, M., Han, J., Dunn, J. B., Cai, H., & Elgowainy, A. (2012). Well-to-wheels energy use and greenhouse gas emissions of ethanol from corn, sugarcane and cellulosic biomass for US use. Environmental Research Letters, 7(4), 045905. doi:10.1088/1748-9326/7/4/045905
Lu, Z., Han, J., Wang, M., Cai, H., Sun, P., Dieffenthaler, D., … Przesmitzki, S. (2016). Well-to-Wheels Analysis of the Greenhouse Gas Emissions and Energy Use of Vehicles with Gasoline Compression Ignition Engines on Low Octane Gasoline-Like Fuel. SAE International Journal of Fuels and Lubricants, 9(3), 527-545. doi:10.4271/2016-01-2208
Argon, A review of Battery Life-Cycle Analysis: State of Knowledge and Critical Needs, 2010.
Millo, F., Ferraro, C. V., & Rolando, L. (2012). Analysis of different control strategies for the simultaneous reduction of CO<SUB align=«right»>2 and NO<SUB align=«right»>x emissions of a diesel hybrid passenger car. International Journal of Vehicle Design, 58(2/3/4), 427. doi:10.1504/ijvd.2012.047393
Asghar, M., Bhatti, A. I., Ahmed, Q., & Murtaza, G. (2018). Energy Management Strategy for Atkinson Cycle Engine Based Parallel Hybrid Electric Vehicle. IEEE Access, 6, 28008-28018. doi:10.1109/access.2018.2835395
Benajes, J., García, A., Monsalve-Serrano, J., & Martínez-Boggio, S. (2019). Optimization of the parallel and mild hybrid vehicle platforms operating under conventional and advanced combustion modes. Energy Conversion and Management, 190, 73-90. doi:10.1016/j.enconman.2019.04.010
Talibi, M., Hellier, P., Watkinson, M., & Ladommatos, N. (2019). Comparative analysis of H2-diesel co-combustion in a single cylinder engine and a chassis dynamometer vehicle. International Journal of Hydrogen Energy, 44(2), 1239-1252. doi:10.1016/j.ijhydene.2018.11.092
Benajes, J., García, A., Monsalve-Serrano, J., & Lago Sari, R. (2018). Fuel consumption and engine-out emissions estimations of a light-duty engine running in dual-mode RCCI/CDC with different fuels and driving cycles. Energy, 157, 19-30. doi:10.1016/j.energy.2018.05.144
Bao, R., Avila, V., & Baxter, J. (2017). Effect of 48 V Mild Hybrid System Layout on Powertrain System Efficiency and Its Potential of Fuel Economy Improvement. SAE Technical Paper Series. doi:10.4271/2017-01-1175
Liu, Z., Ivanco, A., & Filipi, Z. S. (2016). Impacts of Real-World Driving and Driver Aggressiveness on Fuel Consumption of 48V Mild Hybrid Vehicle. SAE International Journal of Alternative Powertrains, 5(2), 249-258. doi:10.4271/2016-01-1166
B. Sarlioglu, C.T. Morris, D. Han, S. Li, Benchmarking of electric and hybrid vehicle electric machines, power electronics, and batteries, in: 2015 Intl Aegean Conf. Electr. Mach. Power Electron., IEEE; 2015, p. 519–526. doi:10.1109/OPTIM.2015.7426993.
Solouk, A., Shakiba-Herfeh, M., Arora, J., & Shahbakhti, M. (2018). Fuel consumption assessment of an electrified powertrain with a multi-mode high-efficiency engine in various levels of hybridization. Energy Conversion and Management, 155, 100-115. doi:10.1016/j.enconman.2017.10.073
Driveline V. GT-SUITE, 2016.
Council GS of the. Proposal for a Regulation of the European Parliament and of the Council setting emission performance standards for new passenger cars and for new light commercial vehicles as part of the Union’s integrated approach to reduce CO2 emissions from light-duty. Brussels, 2019.
Utility Factor Definitions for Plug-In Hybrid Electric Vehicles Using 2001 U.S. DOT National Household Travel Survey Data, 2009. doi:https://doi.org/10.4271/J2841_200903.
Kaushik, L. K., & Muthukumar, P. (2018). Life cycle Assessment (LCA) and Techno-economic Assessment (TEA) of medium scale (5–10 kW) LPG cooking stove with two-layer porous radiant burner. Applied Thermal Engineering, 133, 316-326. doi:10.1016/j.applthermaleng.2018.01.050
Gnansounou, E., Dauriat, A., Villegas, J., & Panichelli, L. (2009). Life cycle assessment of biofuels: Energy and greenhouse gas balances. Bioresource Technology, 100(21), 4919-4930. doi:10.1016/j.biortech.2009.05.067
Deng, T., Zhang, G., Ran, Y., & Liu, P. (2019). Thermal performance of lithium ion battery pack by using cold plate. Applied Thermal Engineering, 160, 114088. doi:10.1016/j.applthermaleng.2019.114088
Moro, A., & Lonza, L. (2018). Electricity carbon intensity in European Member States: Impacts on GHG emissions of electric vehicles. Transportation Research Part D: Transport and Environment, 64, 5-14. doi:10.1016/j.trd.2017.07.012
Shields, M. D., & Zhang, J. (2016). The generalization of Latin hypercube sampling. Reliability Engineering & System Safety, 148, 96-108. doi:10.1016/j.ress.2015.12.002
García, A., Piqueras, P., Monsalve-Serrano, J., & Lago Sari, R. (2018). Sizing a conventional diesel oxidation catalyst to be used for RCCI combustion under real driving conditions. Applied Thermal Engineering, 140, 62-72. doi:10.1016/j.applthermaleng.2018.05.043
Benajes, J., García, A., Monsalve-Serrano, J., & Sari, R. (2018). Potential of RCCI Series Hybrid Vehicle Architecture to Meet the Future CO2 Targets with Low Engine-Out Emissions. Applied Sciences, 8(9), 1472. doi:10.3390/app8091472
[-]