- -

Life cycle assessment of a railway tracks substructures: Comparison of ballast and ballastless rail tracks

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Life cycle assessment of a railway tracks substructures: Comparison of ballast and ballastless rail tracks

Mostrar el registro completo del ítem

Pons, JJ.; Villalba Sanchis, I.; Insa Franco, R.; Yepes, V. (2020). Life cycle assessment of a railway tracks substructures: Comparison of ballast and ballastless rail tracks. Environmental Impact Assessment Review. 85:1-11. https://doi.org/10.1016/j.eiar.2020.106444

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/167600

Ficheros en el ítem

Metadatos del ítem

Título: Life cycle assessment of a railway tracks substructures: Comparison of ballast and ballastless rail tracks
Autor: Pons, Joaquín J. Villalba Sanchis, Ignacio Insa Franco, Ricardo Yepes, V.
Entidad UPV: Universitat Politècnica de València. Departamento de Ingeniería e Infraestructura de los Transportes - Departament d'Enginyeria i Infraestructura dels Transports
Universitat Politècnica de València. Departamento de Ingeniería de la Construcción y de Proyectos de Ingeniería Civil - Departament d'Enginyeria de la Construcció i de Projectes d'Enginyeria Civil
Fecha difusión:
Resumen:
[EN] The increase of train speed and axle load is an essential goal to make the railway transport more and more competitive for passengers and freights. On this basis, the unevenness of the railway track is crucial for the ...[+]
Palabras clave: Life cycle assessment (LCA) , High speed railway (HSR) , Railway infrastructure , Railway track-bed
Derechos de uso: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Fuente:
Environmental Impact Assessment Review. (issn: 0195-9255 )
DOI: 10.1016/j.eiar.2020.106444
Editorial:
Elsevier
Versión del editor: https://doi.org/10.1016/j.eiar.2020.106444
Código del Proyecto:
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/BIA2017-85098-R/ES/DISEÑO Y MANTENIMIENTO OPTIMO ROBUSTO Y BASADO EN FIABILIDAD DE PUENTES E INFRAESTRUCTURAS VIARIAS DE ALTA EFICIENCIA SOCIAL Y MEDIOAMBIENTAL BAJO PRESUPUESTOS RESTRICTIVOS/
Agradecimientos:
This research was funded by the Spanish Ministry of Economy and Competitiveness along with FEDER funding (Project BIA2017-85098R), as well as Dr. Ignacio Navarro Martinez for their valuable comments and assistance.
Tipo: Artículo

References

Åkerman, J. (2011). The role of high-speed rail in mitigating climate change – The Swedish case Europabanan from a life cycle perspective. Transportation Research Part D: Transport and Environment, 16(3), 208-217. doi:10.1016/j.trd.2010.12.004

Banar, M., & Özdemir, A. (2015). An evaluation of railway passenger transport in Turkey using life cycle assessment and life cycle cost methods. Transportation Research Part D: Transport and Environment, 41, 88-105. doi:10.1016/j.trd.2015.09.017

Bressi, S., D’Angelo, G., Santos, J., & Giunta, M. (2018). Environmental performance analysis of bitumen stabilized ballast for railway track-bed using life-cycle assessment. Construction and Building Materials, 188, 1050-1064. doi:10.1016/j.conbuildmat.2018.08.175 [+]
Åkerman, J. (2011). The role of high-speed rail in mitigating climate change – The Swedish case Europabanan from a life cycle perspective. Transportation Research Part D: Transport and Environment, 16(3), 208-217. doi:10.1016/j.trd.2010.12.004

Banar, M., & Özdemir, A. (2015). An evaluation of railway passenger transport in Turkey using life cycle assessment and life cycle cost methods. Transportation Research Part D: Transport and Environment, 41, 88-105. doi:10.1016/j.trd.2015.09.017

Bressi, S., D’Angelo, G., Santos, J., & Giunta, M. (2018). Environmental performance analysis of bitumen stabilized ballast for railway track-bed using life-cycle assessment. Construction and Building Materials, 188, 1050-1064. doi:10.1016/j.conbuildmat.2018.08.175

Chester, M., & Horvath, A. (2010). Life-cycle assessment of high-speed rail: the case of California. Environmental Research Letters, 5(1), 014003. doi:10.1088/1748-9326/5/1/014003

Ciroth, A. (2007). ICT for environment in life cycle applications openLCA — A new open source software for life cycle assessment. The International Journal of Life Cycle Assessment, 12(4), 209-210. doi:10.1065/lca2007.06.337

Ciroth, A., Muller, S., Weidema, B., & Lesage, P. (2013). Empirically based uncertainty factors for the pedigree matrix in ecoinvent. The International Journal of Life Cycle Assessment, 21(9), 1338-1348. doi:10.1007/s11367-013-0670-5

Fridell, E., Bäckström, S., & Stripple, H. (2019). Considering infrastructure when calculating emissions for freight transportation. Transportation Research Part D: Transport and Environment, 69, 346-363. doi:10.1016/j.trd.2019.02.013

Frischknecht, R., & Rebitzer, G. (2005). The ecoinvent database system: a comprehensive web-based LCA database. Journal of Cleaner Production, 13(13-14), 1337-1343. doi:10.1016/j.jclepro.2005.05.002

Jones, H., Moura, F., & Domingos, T. (2016). Life cycle assessment of high-speed rail: a case study in Portugal. The International Journal of Life Cycle Assessment, 22(3), 410-422. doi:10.1007/s11367-016-1177-7

Martínez-Blanco, J., Lehmann, A., Muñoz, P., Antón, A., Traverso, M., Rieradevall, J., & Finkbeiner, M. (2014). Application challenges for the social Life Cycle Assessment of fertilizers within life cycle sustainability assessment. Journal of Cleaner Production, 69, 34-48. doi:10.1016/j.jclepro.2014.01.044

Navarro, I. J., Yepes, V., & Martí, J. V. (2019). Sustainability assessment of concrete bridge deck designs in coastal environments using neutrosophic criteria weights. Structure and Infrastructure Engineering, 16(7), 949-967. doi:10.1080/15732479.2019.1676791

Navarro, I. J., Yepes, V., Martí, J. V., & González-Vidosa, F. (2018). Life cycle impact assessment of corrosion preventive designs applied to prestressed concrete bridge decks. Journal of Cleaner Production, 196, 698-713. doi:10.1016/j.jclepro.2018.06.110

Navarro, I., Yepes, V., & Martí, J. (2018). Life Cycle Cost Assessment of Preventive Strategies Applied to Prestressed Concrete Bridges Exposed to Chlorides. Sustainability, 10(3), 845. doi:10.3390/su10030845

Nimbalkar, S., Indraratna, B., Dash, S. K., & Christie, D. (2012). Improved Performance of Railway Ballast under Impact Loads Using Shock Mats. Journal of Geotechnical and Geoenvironmental Engineering, 138(3), 281-294. doi:10.1061/(asce)gt.1943-5606.0000598

Pascual-González, J., Guillén-Gosálbez, G., Mateo-Sanz, J. M., & Jiménez-Esteller, L. (2016). Statistical analysis of the ecoinvent database to uncover relationships between life cycle impact assessment metrics. Journal of Cleaner Production, 112, 359-368. doi:10.1016/j.jclepro.2015.05.129

Penadés-Plà, V., García-Segura, T., Martí, J., & Yepes, V. (2018). An Optimization-LCA of a Prestressed Concrete Precast Bridge. Sustainability, 10(3), 685. doi:10.3390/su10030685

Pons, J. J., Penadés-Plà, V., Yepes, V., & Martí, J. V. (2018). Life cycle assessment of earth-retaining walls: An environmental comparison. Journal of Cleaner Production, 192, 411-420. doi:10.1016/j.jclepro.2018.04.268

Praticò, F. G., & Giunta, M. (2018). Proposal of a Key Performance Indicator for Railway Track Based on LCC and RAMS Analyses. Journal of Construction Engineering and Management, 144(2), 04017104. doi:10.1061/(asce)co.1943-7862.0001422

Pratico, F. G., & Giunta, M. (2018). LCC-Based Appraisal of Ballasted and Slab Tracks: Limits and Potential. The Baltic Journal of Road and Bridge Engineering, 13(4), 475-499. doi:10.7250/bjrbe.2018-13.429

Rozycki, C. von, Koeser, H., & Schwarz, H. (2003). Ecology profile of the german high-speed rail passenger transport system, ICE. The International Journal of Life Cycle Assessment, 8(2), 83-91. doi:10.1007/bf02978431

Sadeghi, J., Motieyan-Najar, M. E., Zakeri, J. A., Yousefi, B., & Mollazadeh, M. (2018). Improvement of railway ballast maintenance approach, incorporating ballast geometry and fouling conditions. Journal of Applied Geophysics, 151, 263-273. doi:10.1016/j.jappgeo.2018.02.020

Sánchez-Garrido, A. J., & Yepes, V. (2020). Multi-criteria assessment of alternative sustainable structures for a self-promoted, single-family home. Journal of Cleaner Production, 258, 120556. doi:10.1016/j.jclepro.2020.120556

Yue, Y., Wang, T., Liang, S., Yang, J., Hou, P., Qu, S., … Xu, M. (2015). Life cycle assessment of High Speed Rail in China. Transportation Research Part D: Transport and Environment, 41, 367-376. doi:10.1016/j.trd.2015.10.005

Zastrow, P., Molina-Moreno, F., García-Segura, T., Martí, J. V., & Yepes, V. (2017). Life cycle assessment of cost-optimized buttress earth-retaining walls: A parametric study. Journal of Cleaner Production, 140, 1037-1048. doi:10.1016/j.jclepro.2016.10.085

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem