- -

Computational optimization of the dual-mode dual-fuel concept through genetic algorithm at different engine loads

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Computational optimization of the dual-mode dual-fuel concept through genetic algorithm at different engine loads

Show full item record

Xu, G.; Monsalve-Serrano, J.; Jia, M.; García Martínez, A. (2020). Computational optimization of the dual-mode dual-fuel concept through genetic algorithm at different engine loads. Energy Conversion and Management. 208:1-13. https://doi.org/10.1016/j.enconman.2020.112577

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/167741

Files in this item

Item Metadata

Title: Computational optimization of the dual-mode dual-fuel concept through genetic algorithm at different engine loads
Author: Xu, Guangfu Monsalve-Serrano, Javier Jia, Ming García Martínez, Antonio
UPV Unit: Universitat Politècnica de València. Departamento de Máquinas y Motores Térmicos - Departament de Màquines i Motors Tèrmics
Issued date:
Embargo end date: 2022-02-09
Abstract:
[EN] The diesel/gasoline dual-mode dual-fuel (DMDF) combustion concept was optimized in a compression-ignition engine by combining the computational fluid dynamics (CFD) simulations with the genetic algorithm. Seven operating ...[+]
Subjects: Dual-mode dual-fuel (DMDF) , Numerical simulation , Genetic algorithm , EURO VI emission standards , Fuel efficiency
Copyrigths: Embargado
Source:
Energy Conversion and Management. (issn: 0196-8904 )
DOI: 10.1016/j.enconman.2020.112577
Publisher:
Elsevier
Publisher version: https://doi.org/10.1016/j.enconman.2020.112577
Project ID:
UPV/PAID-06-18
...[+]
UPV/PAID-06-18
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/TRA2017-87694-R/ES/REDUCCION DE CO2 EN EL TRANSPORTE MEDIANTE LA INYECCION DIRECTA DUAL-FUEL DE BIOCOMBUSTIBLES DE SEGUNDA GENERACION/
UPV/SP20180148
NSFC/51961135105
NSFC/91641117
China Postdoctoral Science Foundation/2019M661094
[-]
Thanks:
This work was partially supported by the National Natural Science Foundation of China (Grant Nos. 51961135105 and 91641117) and China Postdoctoral Science Foundation (Grant No. 2019M661094). The experimental results used ...[+]
Type: Artículo

This item appears in the following Collection(s)

Show full item record